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2.1	Definition	of	system	
			
At	its	most	abstract	level	a	system	is	comprised	of	a	plurality	of	parts	linked	so	the	
behavior	of	one	part	affects	the	behavior	of	the	others	either	directly	or	indirectly,	
either	strongly	or	weakly.		To	be	more	accurate	a	system	is	a	sub-set	of	parts	in	the	
environment	that	are	linked	strongly	enough	to	be	a	recognizable	entity	and	behave	
as	such	within	the	larger	environment.		In	some	cases	like	a	system	in	the	form	of	a	
living	human	being	its	clear	which	parts	are	included	and	which	aren’t.		In	an	
economic	system	it	becomes	debatable	which	parts	to	include	since	one	system	like	
the	auto	industry	blends	into	another	like	the	steel	industry.		Fluids	and	gases	can	
also	form	systems.		More	on	that	later.	
	
Figure	109	illustrates	a	simple	isolated	system	using	springs	to	connect	the	parts,	
which	have	mass	like	little	steel	balls.		A	frequent	systems	behavior	is	oscillation	as	
the	figure	attempts	to	illustrate.		This	little	diagram	is	a	very	abstract	representation	
of	a	system	but	one	to	keep	in	mind.		Certainly	it	applies	to	systems	comprised	of	
discrete	parts.		However	the	parts	in	gaseous	systems	like	the	atmosphere	or	fluidic	
like	the	oceans	are	not	so	easy	to	visualize	in	this	manner.		Sometimes	its	necessary	
to	consider	a	portion	of	such	systems,	such	as	an	“blob”	of	hot	air	or	water,	as	a	part	
and	watch	how	it	moves	or	changes.	
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Conserving	versus	dissipative	systems:		Conserving	systems	are	systems	whose	
total	internal	energy	remains	constant	even	though	the	energy	associated	with	each	
part	may	be	oscillating.		That	energy	is	input	to	the	system	by	some	initial	outside	
force	that	stretches	the	spring-like	bonds	away	from	their	equilibrium	length.		
Dissipative	systems	have	a	complex	technical	definition	
https://en.wikipedia.org/wiki/Dissipative_system	but	I	see	them	as	systems	where	
energy	is	dissipated	by	friction	or	radiation	until	the	system	comes	to	a	motionless	
halt	unless	they	are	kept	in	motion	by	continued	or	occasional	inputs	of	energy.		A	
frictionless	clock	pendulum	is	a	conserving	system	whose	pendulum	will	swing	
forever.		In	the	real	world	it’s	a	dissipative	system	because	friction	drains	energy	
while	a	spring	or	weight	inserts	enough	–in	the	form	of	escapement	pushes-	to	keep	
it	moving.		Pushing	a	swing	is	the	same	idea.		All	real	world	systems	are	dissipative,	
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some	more	than	others.		The	solar	system	is	closest	to	a	conserving	real-world	
system	while	weather	systems	like	thunderstorms	dissipate	energy	rapidly.		In	
complex	systems	energy	movement	through	a	dissipative	system	is	a	process	where	
one	thing	effects	another	in	a	chain	of	events	until	all	the	energy	escapes.		The	
human	body	is	an	example.		Food	energy	is	input	at	one	end	of	a	metabolic	chemical	
process	–a	sequence	or	cascade	of	reactions-	while	body	heat	and	physical	exertions	
drain	it	away.			Such	processes	can	behave	chaotically.			Dissipative	systems	which	
implement	a	process	constitute	a	whole	dimension	of	system	behavior	I’ve	not	time	
to	explore	here.		
	
	
2.2	Forces	and	behavior:			
	
Force	strength:	There	are	four	basic	forces	in	nature:		
	

Gravity	Weak	but	extends	over	cosmic	distances	
Electromagnetic		Fairly	strong.		Source	of	magnetic	attraction	and	also	
source	of	electrostatic	forces	where	opposite	charges	attract	and	like	charges	
repel.		Works	at	the	atomic	and	molecular	level	to	bind	atoms	into	molecules	
and	hold	solids	together.	
Nuclear	Strong	Force		Extremely	strong.	Holds	atomic	nuclei	together.	
Powers	hydrogen	fusion	bombs.	Acts	only	over	a	very	short	distance	within	
atomic	nuclei.	
Weak	Nuclear	Force		Not	relevant	for	our	purposes.	
	

Only	gravity,	electrostatic,	and	centrifugal	forces	are	relevant	in	systems	discussed	
in	this	book.		Centrifugal	force	is	not	one	of	nature’s	fundamental	forces	however.	
	
Balance	between	attracting	and	repelling	forces:	The	physics	associated	with	
intermolecular	forces,	namely	the	forces	that	hold	molecules	together	to	form	
liquids	and	solids,	underlay	the	simple	diagrams	to	follow	in	Figure	111.		The	image	
below	shows	how	the	“resultant”	or	net	force	between	two	molecules	is	the	
summation	of	attractive	electrostatic	forces	and	repulsive	electrostatic	forces,	each	
of	which	varies	with	the	distance	between	the	molecules.		Electrostatic	forces	boil	
down	to	“like	charges	repel”	and	“opposite	charges	attract”.		The	physics	behind	
these	forces	gets	complex	but	apparently	the	repulsing	force	gets	extremely	strong	
when	the	electron	clouds	surrounding	each	atom	get	too	close.		
http://hyperphysics.phy-astr.gsu.edu/hbase/molecule/paulirep.html.		These	
repulsing	forces	are	what	makes	it	very	difficult	to	crush	solid	materials	or	
compress	liquids.	
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The	red	line	in	image	below	shows	one	again	how	the	net	force	between	two	
molecules	varies	with	the	distance	between	them.		
http://www.schoolphysics.co.uk/age16-
19/Thermal%20physics/Heat%20energy/text/Forces_between_molecules/index.ht
ml	
	At	the	equilibrium	distance	“M”	the	net	force	is	zero.		This	is	also	the	lowest	energy	
configuration,	meaning	it	takes	an	input	of	energy	to	either	push	the	molecules	
closer	together	or	pull	them	further	apart.		On	the	other	hand	if	the	molecules	start	
on	either	side	of	the	equilibrium	they	give	off	energy	–in	an	exothermic	reaction-	as	
they	approach	that	equilibrium.	If	heat	is	applied	to	the	equilibrium	configuration	
the	distance	between	the	molecules	would	begin	to	oscillate	around	the	“M”	
position.		In	the	real-world	there	is	always	some	heat	so	molecules	always	occillate	
internally,	gently	at	low	temperature,	violently	at	high	temperature.	The	potential	
energy	curve	can	also	be	visualized	as	a	ramp	or	well.		If	a	ball	were	at	the	bottom	it	
would	take	energy	to	roll	it	up	on	either	side	and	create	a	pendulum	like	oscillation.	
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The	shape	of	this	red	curve	below	should	be	remembered	because	its	
fundamental	to	understanding	the	dynamics	of	all	systems	where	separate	parts	are	
attracted	by	one	type	of	force	but	repelled	if	they	get	too	close	by	another	type	of	
force.		The	result	is	they	stay	a	certain	distance	apart	–or	oscillate	about	it-	and	form	
a	structure	or	configuration.		This	is	true	whether	the	forces	between	the	parts	are	
springs,	electrostatic,	gravitational,	or	the	nuclear	strong	force.		I	think	a	similar	
situation	is	found	in	all	other	types	of	systems:	ecological,	economic,	social,	etc.		
There	is	some	force	that	binds	parts	into	a	system	and	another	which	keeps	them	
from	merging	entirely.		Sometimes	it	probably	amounts	to	a	balance	of	power	or	
force	between	competing	economic	and	political	organizations.		The	compromise	
they	reach	amounts	to	an	equilibrium.		The	system	they	form	in	that	equilibrium	is	
like	a	giant	molecule.		A	societal	molecule	so	to	speak.	
	
The	four	fundamental	forces	in	nature	can	act	in	sequence	as	masses	get	closer	to	
each	other.		At	long	distances	gravity	pulls	things	together	until	they	form	a	solid	
ball	at	which	time	repulsing	intermolecular	forces	take	over	and	keep	the	ball	from	
being	crushed	further.		Planets	are	good	examples.		If	the	ball	of	matter	is	large	
enough	-like	a	burnt-out	star	of	sufficient	size-		gravity	will	overwhelm	the	repulsive	
intermolecular	forces	and	crush	the	star	into	a	neutron	star.		Something	called	
“Degenerate	Neutron	Pressure” will	resist	further	collapse	at	that	point.		However	if	
the	star	was	large	enough	no	force	can	overcome	gravity	and	the	dead	star	will	
collapse	into	a	black	hole.		
http://minerva.union.edu/vianil/web_stuff2/Election_and_Neutron_Pressure.htm	
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Behavior:	Behavior	is	what	a	system	does,	how	it	changes	over	time.		Change	is	
measured	in	terms	of	the	position	or	speed	of	the	parts,	temperature,	pressure,	or	
some	other	attribute	that	varies	over	time.		In	societal	systems	it	might	be	group	
membership,	organizational	structure,	size,	territory,	revenue,	market	share,	policy	
position,	projects	undertaken,	and	so	forth.		All	these	are	called	variables.	
	
When	a	spring/mass	system	is	in	equilibrium	all	the	springs	are	relaxed	and	the	
parts	aren’t	moving.		When	one	part	is	disturbed,	that	is	pulled	aside	by	some	
outside	force,	the	springs	are	stretched.		When	the	part	is	released	the	springs	try	to	
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pull	it	back	to	its	equilibrium	position.		However	the	part	doesn’t	stop	there	but	
rather	overshoots	and	then	gets	pulled	back	the	other	way.		Thus	the	part	oscillates	
back	and	forth,	until	and	unless	friction	slows	it	to	a	stop.		A	main	premise	of	this	
book	is	that	most	real-world	systems	behave	this	way,	be	they	mechanical	like	the	
solar	system,	chemical	like	living	organisms,	or	ecological,	economic,	or	political.		
The	actions	of	one	part	affect	the	parts	it	has	relationships	with.		Of	course	real	
world	systems	of	practical	interest	are	not	connected	by	springs,	but	since	parts	do	
affect	each	other	there	must	be	some	force	or	force	equivalent	linking	them.		Using	
springs	is	a	convenient	way	to	represent	this	connecting	force.	
	
Figure	111	takes	a	closer	look	at	this.		For	a	system	to	exist	there	need	to	be	two	
types	of	forces;	one	pulling	the	parts	together	so	they	make	a	system	and	other	
keeping	them	some	distance	apart	so	they	remain	separate	parts.		The	attracting	
force	in	solar	systems	is	gravity	and	the	attracting	force	in	molecules	and	solid	
objects	is	some	version	of	electrostatic	or	electromagnetic	force.		Both	are	non-
linear	in	that	their	strength	falls	off	exponentially	with	distance.		The	spring	mass	
systems	obviously	are	held	together	by	springs,	which	at	the	molecular	level	also	
involve	electromagnetic	forces.		However	at	the	macro	level	most	springs	are	linear	
meaning	twice	as	much	force	stretches	them	twice	as	much.		I	won’t	get	into	
repelling	forces	now	except	to	say	they	exist,	although	not	always	in	the	form	
expected.		For	instance	centrifugal	force	is	not	one	of	natures	basic	forces	but	it	does	
balance	gravity	to	keep	planets	in	orbit.	
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Figure	111a	illustrates	the	interplay	of	attracting	and	repelling	forces.		The	large	ball	
with	an	x	through	it	at	left	is	one	part	and	the	small	black	ball	is	the	other	part.		The	
green	line	represents	a	long	range	attracting	force,	which,	like	gravity,	gets	weaker	
the	further	apart	these	two	bodies	are.		The	red	line	represents	a	repelling	force	
that’s	much	stronger	at	close	distance	but	falls	off	rapidly	with	distance.		If	this	kind	
of	repelling	force	didn’t	exist	solid	bodies	like	earth	would	be	crushed	by	gravity	
into	a	tiny	spec.		And	as	black	holes	testify	if	gravity	is	strong	enough	burnt-out	stars	
will	be	crushed	to	miniscule	“singularities”.		The	dotted	line	is	the	sum	of	these	
attracting	and	repelling	forces	and	thus	the	net	force	on	a	body.		At	one	particular	
distance	the	net	force	is	zero	and	a	body	placed	there	will	remain	in	equilibrium.		If	
it	gets	closer	it	will	be	pushed	out.		If	it	is	further	out	the	net	force	pulls	it	in.	
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The	next	four	diagrams	look	at	things	from	an	energy	perspective,	remembering	
that	to	push	against	a	force	takes	energy.	
			
Figure	111”b”	thru	“e”	use	an	easy	to	understand	ramp	analogy.		If	a	part	is	out	on	
the	green	side	of	the	ramp	it	will	roll	in	and	downhill	toward	the	low	point.		If	its	on	
the	red	repelling	side	it	will	roll	out.		Here	the	ball	is	shown	rolling	in.		This	is	the	
essence	of	systems	self-assembly.		Parts	that	start	far	apart	are	pulled	together	until	
they	reach	an	equilibrium	distance	apart.		The	big-bang	blasted	all	the	matter	in	the	
universe	far	apart	and	–in	localized	“gravity	bound”	areas	like	galactic	clusters-	
gravity	has	been	pulling	it	back	together	ever	since.		At	some	point	gravity	will	be	
balanced	by	a	repelling	force	and	inward	movement	will	stop.		Again	we	make	an	
exception	for	black	holes.	
	
Figure	111c	shows	that	if	the	ball	is	pulled	aside	and	then	released	it	will	roll	down	
one	side	and	up	the	other.		Without	friction	this	will	result	in	endless	back	and	for	
the	oscillation.		Arguably	its	how	almost	all	systems	actually	behave	to	one	degree	or	
another.		Its	key	to	note	that	when	the	ball	is	high-up	is	has	potential	energy	or	PE.		
The	force	exerted	on	it	at	that	point	accelerates	it	toward	the	equilibrium	pint	thus	
converting	the	PE	to	kinetic	energy	as	the	ball	speeds	up.		This	is	the	essential	core	
reason	why	systems	oscillate.		
	
Figure	111d	shows	the	body	at	a	distance	where	the	forces	are	balanced	and	thus	
don’t	seek	to	move	it.		Its	at	a	motionless	equilibrium.		Its	fair	to	say	all	systems	tend	
to	evolve	toward	an	equilibrium	configuration	where	all	forces	are	balanced	and	
nothing	changes	or	moves.		However	not	all	equilibriums	are	equal.		There	are	
relatively	weak	of	unstable	local	equilibriums	and	if	a	system	in	one	is	disturbed	
enough	it	might	snap	into	a	different	and	more	stable	configuration.		That	would	
bring	it	to	a	lower	energy	level.			
	
Figure	111e	shows	why	it	takes	energy	to	move	a	part	once	it’s	in	an	equilibrium	
configuration.	Its	like	rolling	the	ball	uphill	either	way.	Same	thing	when	trying	to	
change	a	system	when	its	in	or	near	equilibrium.		In	the	real	world	it	explains	why	it	
takes	considerable	effort	to	change	molecules,	government	policy,	organizational	
structure,	or	start	a	revolution.		
	
Finally	Figure	111f		shows	the	equivalent	situation	if	springs	are	applying	the	
attracting	and	repelling	forces.		Obviously	when	relaxed	they	hold	things	apart	some	
distance,	when	compressed	they	become	repelling	forces	and	when	stretched	they	
act	as	attracting	forces.		Thus	we	can	build	real	physical	models	and	computer	
models	using	springs	that	mimic	the	behavior	of	systems	where	the	parts	are	
effected	by	gravity	and	other	forces.		In	any	system	where	one	part	influences	
another	some	spring-like	force	is	involved.		If	the	parts	are	rigidly	attached	its	really	
the	equivalent	of	very	very	stiff	springs.		The	systems	we	study	in	this	chapter	
mainly	involve	gravitational	or	magnetic	forces,	but	some	use	springs.		There	is	a	
difference	in	how	they	behave	because	springs	apply	linear	forces	whereas	gravity	
and	magnetic	forces	are	non-linear.		To	generalize	I	often	say	“spring-like	forces”	
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when	I’m	not	sure	whether	they	are	linear	like	simple	springs	or	non-linear	like	
gravity.	
	
	
	
	
2.3	Systems	and	their	waveforms	
	
Figure	104	shows	that	systems	with	just	two	parts	oscillate	differently	than	systems	
with	three	or	more	parts.			
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In	a	two-part	system	if	one	part	is	pulled	aside	or	set	in	motion	it	pushes	or	pulls	on	
the	other	causing	it	to	move	in	a	sinusoidal	oscillation	that,	without	friction	or	
collision,	will	continue	indefinitely.		Figure	104	introduces	the	basic	concepts.		At	
top	left	we	see	three	different	two-part	systems.			The	upper	has	a	mass	sitting	on	a	
spring	such	that	gravity	pulls	it	down	while	spring	pressure	pushes	it	up.		When	
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displaced	from	equilibrium	it	will	bounce	up	and	down	and	any	variable	will	trace	a	
perfect	sine	wave	as	shown	on	right.		Without	friction	each	wave	will	be	the	same	as	
those	before	and	future	behavior	can	easily	be	predicted.		If	the	weight	is	lifted	it	
will	introduce	potential	energy	into	the	system	just	as	lifting	a	weight	off	the	floor	
would.		If	it	is	pushed	down	it	will	gain	spring	potential	energy.		Thus	at	time	zero	on	
left	the	system	has	some	level	of	total	potential	energy	“E”.		When	the	weight	is	
released	the	mass	will	accelerate	converting	potential	energy	(PE)	into	kinetic	
energy	(KE).		Without	friction	the	law	of	conservation	of	energy	means	the	total	
energy	must	stay	constant	but	it	can	exchange	between	different	forms,	namely	PE	
or	KE.		The	plot	of	any	variable	in	this	system	whether	its	PE,	KE,	speed,	or	the	
displacement	of	the	mass	will	form	a	sign	wave.		The	plot	shows	that	as	
displacement	or	potential	energy	increases,	speed	or	kinetic	energy	falls.		The	values	
must	always	stay	in	an	envelope	as	determined	by	the	total	energy	in	the	system.		
We	will	see	that	this	applies	whether	the	motion	is	periodic	as	it	is	here	or	chaotic.		
Variables	do	vary	but	only	within	bounds,	even	when	that	variation	is	chaotic.		
	
The	lower	part	of	Figure	104	shows	waveforms	associated	with	systems	having	
three	or	more	parts.		The	parts	don’t	oscillate	with	a	simple	sinusoidal	motion.		
Rather	their	movements	are	more	complex,	possibly	chaotic,	because	each	disturbs	
all	the	others.	
	
The	key	point	about	systems	with	three	or	more	parts	is	that	the	parts	rarely	move	
in	a	perfectly	repeatable	or	periodic	manner	as	the	chart	attempts	to	illustrate.		The	
peaks	and	valleys	in	their	waveform	are	constantly	changing.		In	addition	the	energy	
in	the	system	moves	from	part	to	part	because	the	pushing	part	slows	down	and	
transfers	energy	to	the	part	being	pushed	and	accelerated.			Figure	104	attempts	to	
show	how	the	energy	in	each	part	changes	over	time.		And	that	it	usually	changes	
randomly	or	chaotically.	
	
2.4	All	systems	are	sub-systems,	and	big	dominates	small	
	
These	two	points	were	already	mentioned	in	Chapter	1	but	inserted	here	just	for	a	
reminder.		
	
As	described	in	Chapter	1	no	system	exists	in	total	isolation.		Computer	models	often	
assume	they	do	but	it’s	not	true	in	the	real	world.		The	behavior	of	a	real	world	
system	is	always	affected	to	some	degree	by	events	in	its	environment,	including	the	
behavior	of	other	systems	to	which	it	is	coupled,	weakly	or	strongly.		
	
There	is	a	hierarchy	of	systems	ranging	from	the	very	powerful	to	the	very	weak.		
The	most	powerful	system	of	practical	concern	is	the	solar	system	whose	behavior	
affects	almost	everything	on	earth,	but	it	can’t	be	argued	that	what	happens	on	earth	
has	any	noticeable	effect	on	earths	orbit.		“Small”	systems,	even	ones	as	large	as	the	
economy	ride	atop	and	are	influenced	by	larger	underlying	systems	like	ocean	
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current	circulation	and	climate,	which	in	turn	ride	atop	and	are	thus	influenced	in	
the	long	term	by	changes	in	earths	orbit	caused	by	interaction	with	other	planets.		
	
The	big	parts	within	a	system	affect	the	small	parts	more	than	vice	versa.		For	
instance	Jupiter’s	behavior	gravitationally	affects	earth	far,	far	more	than	the	
reverse.		And	clearly	the	suns	behavior,	especially	solar	storms,	affects	earth	but	its	
hard	to	imagine	how	earth	could	affect	the	sun	in	any	meaningful	way.		Government	
has	far	more	affect	on	an	individual	corporation	than	the	reverse.		One	reason	to	
mention	this	is	that	the	parts	in	toy	systems	like	the	double	pendulum	tend	to	be	
more	or	less	the	same	size.		Not	different	by	an	order(s)	of	magnitude.			
	
2.5	Fluids	and	gases	as	systems	
	
This	book	deals	almost	entirely	with	mechanical	systems	comprised	of	a	few	
discrete	parts	connected	by	spring-like	forces	into	some	spatial	configuration	like	a	
double	pendulum,	solar	system,	or	molecule.		However	systems	can	be	made	from	
fluids	and	gases.		We	refer	to	circulating	ocean	currents	as	systems	as	well	as	the	
atmosphere.		These	systems	behave	chaotically	to	a	greater	or	lesser	extent	and	will	
be	referenced	from	time	to	time	but	not	explored	in	depth.	
	
Its	not	easy	to	see	how	the	same	physical	laws	apply	to	tiny	mechanical	systems	
with	a	few	parts	and	also	to	fluids	and	gases	with	untold	trillions	of	parts,	but	it	
seems	that	a	fluid	or	gas	is	essentially	a	huge	spring/mass	system	where	the	
vibration	and	movement	of	each	molecule	effects	every	other.		If	we	look	just	at	the	
micro	scale	where	electromagnetic	forces	govern	the	vibration	within	molecules	we	
tend	to	overlook	the	gravitational	forces	that	also	affect	groups	of	molecules	at	the	
macro	level.		Thus	when	a	molecule	of	water	is	heated	the	intra-molecular	springs	
vibrate	harder	making	the	molecule	effectively	larger,	and	thus	less	dense.		Gravity	
acts	on	a	blob	of	less-dense	water	making	it	rise	up.		Thus	on	the	macro	scale	we	see	
convection	currents	in	the	ocean	and	atmosphere,	and	consider	their	configurations	
as	systems	in	their	own	right.		We	have	a	hierarchy	of	systems	from	the	very	small	
to	the	very	large	and	a	behavior	at	each	level.		I	haven’t	time	to	really	focus	on	the	
behavior	of	fluidic	systems	in	this	book.	
	
	
2.6	Energy		
	
Conservation	of:	If	there	is	no	friction	or	other	way	to	throw	off	energy	then	the	
total	level	of	energy	in	a	system	remains	constant.		The	law	about	conservation	of	
energy	requires	that	it	all	stay	within	the	system	although	it	can	oscillate	between	
its	potential	and	kinetic	forms	and	move	from	place	to	place	or	part	to	part.	Real-
world	systems	almost	always	shed	energy	thru	friction,	which	turns	to	heat,	and	
then	radiates	away.		Gravity	waves	also	shed	energy	from	planetary	or	stellar	
systems,	albeit	very	slowly.			Almost	all	the	simulations	I	discuss	in	this	book	
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conserve	energy	so	they	contain	the	same	total	energy	throughout.		This	is	realistic	
enough	for	our	purposes.	
	
System	as	energy	storage	device:	In	many	natural	systems	made	with	parts	
having	mass–as	opposed	to	societal	systems-	energy	is	stored	in	the	system	when	
parts	are	moving	and	thus	have	kinetic	energy,	or	when	the	spring-like	forces	are	
either	stretched	or	compressed.		This	gives	them	potential	energy.		A	grapefruit	
sitting	on	the	counter	has	potential	energy	because	lifting	it	there	stretched	its	
gravitational	bond	with	earth.	
	
Energy	in	dissipative	systems:		Systems	are	either	conservative	or	dissipative.		In	
a	conservative	system	there	is	no	friction	or	other	way	for	energy	to	bleed	off	so	the	
total	energy	in	the	system	remains	constant.		Dissipative	systems	dissipate	energy	
as	they	move.		Energy	is	added	to	the	Lorenz	waterwheel	by	pouring	water	in	at	the	
top.		It	dissipates	or	bleeds	off	when	the	water	leaks	from	the	cups	at	a	lower	level.		
In	the	Rayleigh-Benard	convection	cells	its	added	as	heat	along	the	bottom	and	
dissipated	at	the	cooler	top.		Assuming	the	energy	bleeds	off	at	the	same	rate	its	
added	I	believe	that	there	is	still	a	certain	fixed	amount	of	energy	in	a	dissipative	
systems	and	the	parts	must	move	so	as	to	express	or	contain	it.			
	
Energy	changes	form	and	moves	within	the	system:		The	back	and	forth	
conversion	of	energy	from	its	potential	form	to	its	kinetic	form	is	well	recognized	
but	strangely	enough	I’ve	not	seen	the	fact	it	moves	from	place	to	place	or	part	to	
part	mentioned	in	the	literature.		I	discuss	this	a	lot	later	but	for	now	suffice	it	to	say	
that	in	a	double	pendulum	the	arms	push	and	pull	on	each	other.		The	pushing	arm	
gives	some	of	its	energy	to	the	one	being	pushed	so	energy	moves,	actually	oscillates	
between	the	different	parts.		
	
	
2.7	Defining	chaos	
	
Casual	definition:		The	casual	definition	of	chaos	is	that	utter	confusion	exists	and	
anything	can	happen.		Scientists	have	a	very	different	definition.		To	them,	chaos	is	a	
random	looking	oscillation	that	stays	within	bounds	and	follows	the	laws	of	physics.	
	
Scientific	definition:	According	to	Strogatz	there	is	no	universally	accepted	
definition	of	chaos.	however	he	offers	the	following.		

“Chaos	is	aperiodic	long-term	behavior	in	a	deterministic	system	that	
exhibits	sensitive	dependence	on	initial	conditions”	(Ca2,	p.323)	

Note	the	word	“aperiodic”.		During	my	early	research	I	fell	victim	to	thinking	that	
any	behavior	that’s	aperiodic	is	by	definition	chaotic,	while	ignoring	his	point	that	it	
also	needs	to	show	SDIC.		Both	tests	should	be	applied,	and	I’ve	since	done	so.		
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Here	is	what	Wikipedia	says	by	way	of	definition:		

“Although no universally accepted mathematical definition of chaos exists, a 
commonly used definition originally formulated by Robert L. Devaney says that, for a 
dynamical system to be classified as chaotic, it must have these properties:[12] 

1. it must be sensitive to initial conditions 
2. it must be topologically mixing 
3. it must have dense periodic orbits 

In some cases, the last two properties in the above have been shown to actually imply 
sensitivity to initial conditions.[13][14] In these cases, while it is often the most 
practically significant property, "sensitivity to initial conditions" need not be stated in 
the definition.” https://en.wikipedia.org/wiki/Chaos_theory 

I	don’t	clearly	understand	what’s	meant	by	topologically	mixing	or	dense	periodic	
orbits	but	I	think	they	refer	to	phase	space	plots	and	that	the	double	pendulum	and	
other	toy	systems	discussed	in	this	book	satisfy	those	criteria.	

Here’s	another	from	Math	Insight:		

“A	dynamical	system	exhibits	chaos	if	it	has	solutions	that	appear	to	be	quite	
random	and	the	solutions	exhibit	sensitive	dependence	on	initial	conditions.”	
http://mathinsight.org/definition/chaos	

One	of	the	best	plain	English	descriptions	of	chaos	I’ve	found.		Includes	discussion	of	
its	definition:	http://plato.stanford.edu/entries/chaos/#DefCha	
	
Lyapunov	Exponent:	The	Lyapunov	exponent	is	a	widely	used	test	for	judging	
whether	a	system	is	chaotic	or	not.		It	basically	measures	how	sensitive	the	system	
is	to	small	differences	in	initial	conditions	or	SDIC.		In	other	words	it	measures	how	
fast	the	waveforms	diverge.		You	can	see	this	simply	by	comparing	them,	but	the	
Lyapunov	exponent	is	a	technical	measure.			
	

“The	System	is	said	to	behave	chaotically	if	the	Lyapunov	exponent	is	
positive,	while	a	Lyapunov	exponent	less	than	or	equal	to	zero	denotes	non-
chaotic	behavior.”	
http://psi.nbi.dk/@psi/wiki/The%20Double%20Pendulum/files/projekt_2
013-14_RON_EH_BTN.pdf		Below	is	a	plot	of	that	exponent	for	the	double	
pendulum.			
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According	to	this	test	the	double	pendulum	becomes	chaotic	when	the	pendulum	is	
released	with	a1=a2=	0.7	radians	(40	degrees).		This	was	apparently	computed	for	a	
double	pendulum	with	solid	arms	whereas	all	my	simulations	used	point	masses,	
which	I	call	bobs.		Its	not	clear	that	the	same	angles	that	mark	the	threshold	to	chaos	
with	solid	arms	apply	to	point	mass	bobs.		I	assumed	they	didn’t.		
	
One	problem	with	using	the	Lyapunov	exponent	is	that	one	must	know	the	
equations	of	motion	for	the	system	and	enough	math	to	compute	it.		
	
The	SDIC	test:	Its	true	and	very	easy	to	demonstrate	–assuming	you	have	the	right	
computer	models-	that	toy	system	exhibit	sensitive	dependence	on	initial	conditions	
or	SDIC.		SDIC	means	that	a	small	difference	in	the	initial	condition	of	a	chaotic	
system	will	magnify	over	time	and	make	a	very	large	difference	in	its	future	
condition.		Some	experimenters	have	built	two	identical	double	pendulums	and	
released	them	at	the	same	time	albeit	at	slightly	different	angles	to	see	how	the	
waveforms	diverge.		Others	have	done	essentially	the	same	thing	using	computer	
models.		The	first	figure	below	shows	the	waveforms	–generated	by	a	computer	
model-	of	three	double	pendulums	released	at	almost	the	same	low	10	degree	angle.	
They	differed	only	by	0.01	radians	(one	half	degree).		The	wave	for	each	pendulum	
is	plotted	in	red,	blue	or	green.		With	10	degree	release	they	had	very	little	energy	in	
this	run.	Each	block	shows	a	different	variable.	For	instance	the	upper	left	plots	the	
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angle	of	the	upper	arm.		It’s	a	bit	hard	to	see	but	the	blue,	red	and	green	waveforms	
differed	little	in	this	simulation.		At	first	glance	they	seem	periodic	but	closer	
inspection	shows	the	heights	of	the	peaks	are	slowly	drifting.		My	experiments	
showed	the	same	thing	at	low	energy.		Namely	this	is	not	perfectly	periodic	
behavior,	rather	its	quasi-periodic.			
	
	
	

	
	
The	image	below	shows	how	the	red,	green	and	blue	waveforms	diverge	then	the	
arms	are	released	at	a	much	higher	105	degree	angle	giving	the	system	considerably	
more	energy	and	making	it	chaotic.	
	
These	waveforms	show	why	the	long-term	behavior	of	chaotic	systems	can’t	be	
predicted.		Which	line	is	right,	the	red	one,	the	blue	one,	or	the	green	one?		On	the	
other	hand	the	three	lines	lie	close	tighter	for	a	while	indicating	that	short-term	
forecasts	are	possible	with	a	good	model.		This	is	the	reason	its	relatively	easy	to	
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predict	whether	it	will	rain	three	days	from	now,	but	not	10	or	more	days	out.		We	
can	of	course	cite	probabilities	based	on	historic	records.	
	

	
	
Eyeball	test:		Unfortunately	I	didn’t	have	access	to	a	model	that	could	plot	
waveforms	for	two	or	more	double	pendulums	at	the	same	time	so	I	was	unable	to	
make	plots	like	those	above	and	use	them	to	say	if	a	particular	run	was	chaotic	or	
not.		I	was	however	able	to	make	two	separate	runs	with	slightly	different	initial	
conditions	and	compare	them	visually.		I	used	that	technique	extensively	in	my	
analysis	of	the	double	pendulum.		Details	appear	in	Chapters	7,8	and	9.	
	
Systems	behavior	including	chaotic	behavior	is	deterministic.		This	means	that	
the	way	the	system	is	today	is	the	sole	determinant	of	how	it	will	evolve	in	the	
future.		Starting	with	its	current	situation	the	way	it	will	change	or	evolve	will	obeys	
the	laws	of	physics.		Nothing	in	the	behavior	of	these	systems	happens	by	chance	or	
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luck.	Waveforms	do	appear	to	vary	randomly,	and	they	are	often	described	that	way,	
but	its	just	physics	doing	its	thing.	
	
	
	
2.8		Videos	and	references	about	chaos	
	
A	nice	4-minute	introduction	to	chaos	by	James	Gleich	is	found	at:	
http://www.clausewitz.com/mobile/chaosdemos.htm#DblPend	
	
Compelling	lab	demo	using	rubber	sheet	to	show	solar	system	dynamics:	
https://www.youtube.com/watch?v=MTY1Kje0yLg	
	
Sophisticated	discussion	in	plain	English	about	the	definition	of	chaos	with	
extensive	references	at:	http://plato.stanford.edu/entries/chaos/…	
	
A	readable	discussion	of	chaos	included	doffing	oscillator.	Phase	space,	etc.:		
https://books.google.com/books?id=l2E4ciBQ9qEC&pg=PA117&lpg=PA117&dq=ch
aos+spring+mass&source=bl&ots=7HJuhOrR4X&sig=n2i2PQJO5HLIQhbDdTFLDz0k
o1M&hl=en&sa=X&ved=0ahUKEwiXyoyWtdfJAhUQ0mMKHV7zBd4Q6AEINDAD#v=
onepage&q=chaos%20spring%20mass&f=false	
	
This	is	good	on	climate	and	chaos:	
http://www.realclimate.org/index.php/archives/2005/11/chaos-and-climate/	and	
so	is	this:	https://www.aip.org/history/climate/chaos.htm	
	
	
2.9	Tools	and	techniques	for	analysis	
	
There	are	simple	mechanical	and	electrical	systems	whose	real-world	behavior	can	
be	observed,	and	watching	them	is	instructive.		However	computer	simulation	
models	are	far	more	useful	since	one	can	accurately	vary	certain	parameters	and	
make	plots	showing	how	the	variables	change	in	response.		Several	Java	models	
easily	obtained	on	the	web	have	been	used	by	the	author	to	great	benefit.		A	model	
of	the	double	pendulum	created	by	Dr.	Dooling	has	been	especially	helpful.	
http://www2.uncp.edu/home/dooling/applets/double_pen.files/tom/models/dou
blepen.html.	Or	
http://www2.uncp.edu/home/dooling/applets/double_pen.files/tom/models/dou
blepen.html	
	
With	models	one	can	plot	how	variables	changes	over	time	but	sometimes	its	more	
instructive	to	show	how	one	variable	is	changing	relative	to	how	another.		If	there	
are	two	variables	the	value	of	one	is	plotted	on	the	X	axis	and	the	other	on	the	Y	axis	
so	we	get	a	2-dimensional	plot.		Three	variables	produce	a	3-D	plot.		These	are	called	
“phase	space”	portraits	or	plots.		If	there	are	more	than	three	variables	the	phase	
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space	plot	would	require	4	or	more	dimensions.		That’s	impossible;	however	even	
plotting	two	or	three	is	often	sufficient.			Its	often	easier	to	see	how	periodic,	quasi-
periodic	or	chaotic	a	system	is	by	making	phase	space	plots	that	it	is	by	looking	at	
the	waveforms.		The	value	of	all	the	variables	at	any	instant	shows	up	as	a	dot	in	
phase	space	but	as	the	variables	change	the	dot	moves	leaving	a	trace	or	trajectory	
behind	it.		If	the	dot	traces	the	same	pattern	time	after	time	the	system	is	oscillating	
periodically.		If	not	its	either	quasi-periodic	or	chaotic.			
	
I	highly	recommend	spending	some	time	with	these	simulation	models	as	nothing	
gives	a	feel	for	a	systems	behavior	better	than	watching	it	in	action.		They	are	often	
written	in	Java	and	easily	downloaded	from	the	web	after	getting	your	security	
settings	to	accept	them.	
		
The	screenshot	below	shows	the	user	interface	to	Dr.	Dooling’s	model	of	the	double	
pendulum.		I	used	it	extensively.		Users	can	adjust	any	of	the	parameters.		When	
both	bobs	hang	motionless	and	straight	down	there	is	zero	energy	in	the	system.		
Before	initiating	a	run	the	bob	or	bobs	are	lifted	to	some	angle	in	order	to	insert	
potential	energy	into	the	system.		Usually	I	just	varied	angle	1	to	see	how	the	system	
behaved	at	different	energy	levels.	
	
These	screenshots	show	the	user	interface	and	some	of	the	plots	that	can	be	
generated.	
	
The	upper	left	diagram	shows	the	pendulum	bobs	and	the	last	few	seconds	of	the	
trace	left	behind	them	as	they	move.		In	this	case	the	lower	left	plot	shows	a	
waveform	depicting	how	the	kinetic	energy	of	the	blue	bob	changed	over	time.		In	
this	run	the	red	bob	was	released	high	so	the	system	had	a	large	amount	of	energy.		
This	made	it	chaotic	and	enabled	the	blue	bob	to	swing	over	the	top	or	spin	on	
occasion.		Here	its	just	gone	over	the	top.		The	waveform	is	highly	irregular	but	we	
haven’t	watched	it	long	enough	or	seen	enough	other	data	yet	to	conclude	whether	
its	periodic,	quasi-periodic	or	chaotic.			
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Usually	its	easier	to	determine	if	a	system	is	behaving	perfectly	periodically,	quasi-
periodically,	or	chaotically	by	plotting	one	variable	against	another	as	shown	in	the	
screenshots	below.		This	produces	a	2-D	view	into	what	is	really	a	4-D	“phase	space	
portrait”	because	the	double	pendulum	has	four	variables	PE1,	PE2,	KE1	and	KE2.		
		
The	first	screenshot	below	the	2-D	or	partial	phase	space	plot	for	a	system	that	was	
oscillating	perfectly	periodically	or	very	close	to	same.	The	trace	goes	round	and	
round	retracing	exactly	the	same	pattern	time	after	time,	one	atop	the	other.		Given	
where	all	the	other	parameters	–line	bob	mass	and	arm	length-	were	set	the	release	
angle	a1	had	to	be	exactly	right	to	get	perfectly	periodic	operation.		In	this	case	it	
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was	51.44	degrees.		This	value	was	found	by	trial	and	error	starting	with	a	run	that	
just	seemed	close.		
			
	

	
	
Below	we	show	what	quasi-periodic	behavior	looks	like.		The	trace	makes	the	same	
general	pattern	over	and	over	–it	was	stopped	for	this	screenshot	after	four	times-	
but	the	values	are	slightly	different	each	time	so	the	patterns	are	offset.		These	lines	
will	continue	to	drift	until	they	fill-in	the	entire	envelope.	The	size	of	the	envelope	is	
limited	by	the	energy	in	the	system.		In	this	case	angle	1	can	never	exceed	the	51	
degrees	it	was	released	at.		Note	that	angle	a1	was	almost	the	same	as	the	angle	that	
made	the	run	above	perfectly	periodic.		The	perfectly	periodic	run	was	found	by	fine	
tuning	angle	1	by	trial	and	error.	
	

	
	
The	following	three	screenshots	from	another	run	show	how	the	values	drift	over	
time	during	quasi-periodic	operation.		The	first	was	taken	about	13	seconds	into	the	
run,	the	second	was	taken	after	150	seconds	and	the	last	after	300	seconds.		I	judged	
this	as	quasi-periodic	because	it	was	obvious	that	the	general	pattern	of	behavior	
repeated	time	after	time	but	since	the	patterns	did	not	overly	precisely	this	was	not	
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perfectly	periodic	behavior.		Other	more	casual	observers	have	apparently	called	
this	behavior	“periodic”,	which	is	a	loose	interpretation	of	that	term.				
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If	the	above	run	had	run	long	enough	the	trace	would	have	probably	filled	in	the	
entire	envelope	as	it	did	in	other	quasi-periodic	runs.		The	red	lines	show	the	range	
over	which	variable	a1	changed.		I	usually	say	the	values	or	patterns	drift.		Its	
obvious	that	some	amount	of	prediction	is	possible	when	the	system	is	operating	
quasi-periodically.	
	
Below	is	an	example	of	chaotic	behavior.		The	trace	follows	a	random	route.		There	
is	no	consistent	pattern.		If	let	run	longer	these	lines	would	also	fill-in	the	entire	
envelope.			
	
	

	
	
	
You	should	now	have	some	idea	how	these	tools	are	applied	to	better	understand	
the	behavior	of	this	system.		We	discuss	the	useful	insights	later.	
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If	one	variable	in	a	system	is	changing	it	means	all	the	others	are	changing	in	similar	
manner.	In	other	words	we	could	plot	angle	1,	angle	2,	ke1	or	ke2	and	they	would	all	
have	similar	waveforms	over	time.	Its	handy	to	know	that	when	viewing	
simulations.		Having	said	that,	plotting	two	variables	in	a	partial	phase	space	plot	
makes	it	easier	to	determine	if	a	system	is	perfectly	periodic,	quasi-periodic	or	
chaotic.		
	
The	stage	is	now	set	to	have	a	closer	look.		After	showing	pictures	or	linking	to	
videos	of	some	dynamic	systems	in	Chapter	3,		Chapters	4	and	5	will	follow	by	
listing	what	I	feel	are	the	most	important	findings	about	systems	behavior	that	I’ve	
become	aware	of.		Each	finding	or	conclusion	will	include	plots,	screenshots,	or	
other	data	to	support	it	so	its	not	just	speculation.		
	
Chapters	6,7,8,	9	and	10	describe	in	detail	simulation	runs	I’ve	made	in	order	to	
discover	how	the	double	pendulum	and	magnetic	pendulum	behave.			
	
Chapters	11	and	12	attempt	to	relate	what	we	know	about	toy	systems	to	several	
large	real-world	systems.		Experts	like	Strogatz	write	that	the	application	of	chaos	
theory	to	complex	systems	is	largely	“unexplored	territory”.	(Ca2,	p.10)		
	
Making	that	jump	involves	some	speculation	on	my	part.		That’s	partly	because	I	
haven’t	found	simulation	models	to	help	bridge	the	gap.		In	other	words	models	that	
have	more	parts	than	the	small	toy	systems	studied	so	far	and/or	are	designed	for	
serious	analysis.		For	instance	the	spring/mass	simulations	I’ve	found	with	about	6	
parts	don’t	produce	adequate	waveform	and	phase	space	plots	and/or	they	don’t	
allow	initial	conditions	to	be	set	accurately.		What	I	think	would	be	most	helpful	is	a	
spring/mass	model	that	could	handle	up	to	say	20	masses	all	connected	by	springs.		
The	user	should	be	able	to	select	the	number	of	masses,	insert	springs	wherever	he	
choses,	make	the	springs	linear	or	non-linear,	produce	all	the	requisite	plots,	be	able	
to	plot	the	force	on	any	mass,	track	the	energy	of	each	mass,	be	able	to	test	for	SDIC,	
etc.		In	Chapter	11	I’ve	described	such	a	model	in	more	detail.	
	
	


