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9.1		Overview	of	behavior		
	
Slide	87	summarizes	the	behavior	of	the	double	pendulum	with	m2=1.0.		Generally	
it’s	the	same	pattern	of	behavior	as	that	seen	with	m2=0.5,	but	of	course	all	the	
numbers	are	different.		The	most	notable	difference	is	that	with	m2=0.5	the	system	
was	perfectly	periodic,	chaotic,	AND	able	to	go	over	the	top	all	at	about	the	same	
energy	level	(a1	about75	degrees).		Here	the	system	was	perfectly	periodic	and	
chaotic	at	nearly	the	same	energy	level	(a1	about	65	degrees),	but	it	wasn’t	able	to	
go	over	the	top	until	a	higher	energy	was	reached.	
	
This	section	also	briefly	studied	the	transition	from	quasi-periodic	to	chaotic	
operation	to	see	if	any	dramatic	or	notable	differences	in	the	system	behavior	
(waveforms)	occurred.			
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9.2		Quasi-periodic	behavior	
	
I	have	judged	that	the	double	pendulum	is	quasi-periodic	when	it	has	little	energy	
because	the	bob	was	released	at	a	low	angle.		This	conflicts	with	other	authors	who	
say	the	double	pendulum	is	periodic	at	low	energy.		This	section	provides	support	
for	my	claim.					
	

Slide	87	
Behavior	summary	of	double	
pendulum	with	m2=1.0	
	

*Numbers	show	angle	of	
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I’ve	not	seen	the	term	“quasi-periodic”	defined	in	the	technical	literature	but	it	
apparently	means	behavior	that	is	somewhat	periodic	but	not	perfectly	periodic.		Its	
like	a	dance	whose	general	movements	repeat	time	after	time	but	the	twists	and	
turns	aren’t	all	the	same	shape	and	the	steps	aren’t	always	the	same	size.		A	ballet	is	
a	good	example	of	quasi-periodic	behavior	because	the	moves	during	any	given	
performance	(i.e.:	period)	will	not	be	exactly	the	same	from	one	performance	to	
another.		Note	that	the	moves	within	a	performance	can	be	quite	complex	as	can	the	
movements	of	the	double	pendulum	during	one	if	its	“periods”.		I	use	quotes	because	
a	period	is	arguably	not	a	true	period	unless	the	moves	repeat	exactly,	not	
approximately.		If	the	moves	repeat	exactly	I	use	the	term	“perfectly	periodic”.		
Others	may	use	the	term	period	casually,	thus	creating	confusion.		
	
The	screenshot	below	shows	a	low	energy	run	where	the	red	bob	was	released	at	40	
degrees.		This	run	used	the	Dooling	simulation	model	and	aside	from	a1	all	
parameters	were	left	at	their	default	values.		This	waveform	appears	to	complete	its	
pattern	or	one	period	after	about	36	seconds.		Again	all	these	results	assume	that	
the	Dooling	simulation	model	I	used	is	accurate	and	doesn’t	have	some	artificial	
characteristics	that	makes	the	patterns	drift.	
	
	

	
	
The	screenshot	below	shows	the	situation	after	64	seconds	and	seems	to	confirm	
that	this	is	somewhat	periodic	operation	with	a	period	of	about	36	seconds.		
However	its	not	obvious	whether	the	waveforms,	the	heights	of	the	peaks	is	exactly	
identical	from	one	period	to	the	next.		A	different	type	of	plot	is	needed	to	show	that,	
namely	a	partial	phase	space	plot	that	uses	only	two	of	the	four	variables	needed	for	



9-4	

a	full	phase	space	plot.		Any	two	will	do.		I	generally	plot	a1	versus	ke2.		The	phase	
space	plot	allows	the	trace	to	be	compared	over	a	long	period	of	time	to	better	judge	
if	the	pattern	repeats.			
	

	
	
	
	
The	screenshot	below	plots	angle	1	versus	ke2	(a	proxy	for	the	speed	of	the	outer	
bob)	over	18	seconds	or	one	half	period.				
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The	screenshot	below	shows	the	trace	over	a	full	36-second	period.			
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The	screenshot	below	also	covers	one	full	period	but	shows	what	it	looks	like	if	a1	is	
plotted	against	a2.	
	

	
	
	
If	the	system	is	perfectly	periodic	this	pattern	should	repeat	exactly	every	36	
seconds	thereafter.		The	new	trace	would	lie	exactly	atop	the	existing	ones.	
However	the	following	screenshot	shows	that	as	the	second	period	starts	the	new	
trace	is	not	exactly	retracing	the	above	pattern.		Instead	it	is	drawing	a	somewhat	
offset	pattern	as	indicated	by	the	arrow.		I	say	the	values	are	drifting.		If	this	system	
exhibited	period	doubling	–which	I	haven’t	been	able	to	detect-	then	this	third	line	
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might	indicate	the	beginning	of	a	period-2	oscillation.		If	so	we	should	eventually	see	
a	pattern	with	four	lines	that	repeats	every	72	seconds.			
	
	

	
	
However	that	does	not	happen.		Instead	each	new	pattern	is	slightly	offset	from	the	
prior	ones,	and	will	eventually	fill	in	the	entire	envelope	as	shown	below.		Its	
possible	this	161-second	long	run	is	showing	something	like	period-4	or	period-8	
oscillation	but	I	am	assuming	that’s	not	the	case.		Instead	I	assume	this	is	quasi-
periodic	operation	where	the	exact	same	waveform	with	the	exact	same	heights	on	
every	peak	will	never	repeat.		As	such	there	are	no	true	periods	so	this	is	aperiodic	
behavior	and	more	specifically	a	subcategory	of	aperiodic	operation	called	quasi-
periodic.		The	other	category	is	called	chaotic.		
	
The	size	of	this	envelope	increases	as	the	energy	within	the	system	is	increased.		No	
variable	can	ever	go	outside	this	envelope.		In	this	case	the	red	bob	can	never	go	
higher	than	the	angle	(a1=40	degrees)	it	was	released	at	since	it	lacks	the	energy	to	
do	so.		However	for	the	blue	bob	to	move	and	have	kinetic	energy	it	must	take	
energy	from	the	red	bob	so	when	blues	kinetic	energy	peaks	red	must	loose	all	its	
potential	energy.		We	see	that	at	the	top	of	the	envelope.					
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Every	other	low	energy	run	I’ve	made	produces	a	similar	diagram	in	the	sense	that	
there	is	some	general	repetitive	pattern	of	movement	but	the	patterns	“drift”	in	
value	over	time.		The	waveform	peaks	–like	the	value	of	a1	or	ke2-		eventually	touch	
on	all	possible	values,	which	is	what	also	happens	in	chaotic	behavior	and	makes	the	
iconic	bifurcation	for	the	logistics	equation	gray	after	a	sequence	of	period	doubling.				
The	fact	that	the	double	pendulum	produced	these	drifting,	quasi-periodic	plots	
even	at	energies	as	low	at	a1=.1	degree	strongly	suggests	there	is	no	period-1	
oscillation	at	low	energy	in	the	double	pendulum	whereas	there	is	period-1	
oscillation	at	low	driving	force	(the	assumed	equivalent	of	energy)	in	the	bifurcation	
diagram	for	the	logistics	equation.		
	
Quasi-periodic	behavior	in	the	double	pendulum	spans	a	wide	range.		At	low	energy	
its	very	close	to	being	perfectly	periodic.		One	can	clearly	see	the	dance	repeat.		At	
high	energy	–just	short	of	what	could	be	officially	called	chaotic-	there	is	almost	no	
discernable	pattern,	but	there	is	some.			Things	can	be	more	or	less	quasi.	
	
Clearly	a	certain	degree	of	prediction	is	possible	during	quasi-periodic	operation.		If	
you	have	watched	a	pattern	approximately	repeat	a	few	times	you	can	assume	it	will	
continue	to	do	so.		The	moves	will	be	similar	but	the	size	of	the	steps	will	differ	a	bit.	
			
Could	quasi-periodic	actually	be	perfectly	periodic	with	a	long	period?	That	will	be	
addressed	later.	
	
	
9.3		Perfectly	periodic	operation		
	
This	section	describes	instances	of	perfectly	periodic	operation	with	m2=1.0	
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Judgments	about	whether	a	given	run	is	perfectly	periodic	or	not	are	somewhat	
subjective	on	the	authors	part.		Generally	if	the	trace	stays	with	a	very	narrow	band	
over	a	reasonably	long	time	I	call	it	perfectly	periodic.		However	I’ve	found	that	
some	runs	which	seemed	perfectly	periodic	for	say	100	or	200	seconds	-during	
which	the	pattern	retraced	almost	exactly-	eventually	turned	out	to	be	quasi-
periodic	if	observed	over	a	very	long	time.			
	
With	that	in	mind	Slide	95	shows	all	the	runs	that	appeared	perfectly	periodic	
during	the	times	observed.		In	most	cases	m2	was	left	at	its	default	value	of	1.0.		It	is	
suspected	that	a	through	search	would	have	turned	up	more	than	these	five.			
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The	panels	at	right	provide	more	detail	about	the	runs	at	and	near	angle	65.		The	
pattern	at	top	right	was	found	to	redraw	fairly	accurately	several	times	so	runs	were	
made	just	above	and	below	65	degrees	to	fine	tune	a1	so	the	pattern	would	retrace	
even	more	accurately.		The	best	result	was	produced	at	64.9	degrees.		In	a	very	long	

Slide	95		
Perfectly	Periodic	runs		
with	m2=1.0	

All	with	a2=0		m2=1.0		
L1=L2=m1=1	drag=0		
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run	lasting	1320	seconds	this	pattern	was	seen	to	retrace	within	a	very	narrow	band	
as	shown	in	the	second	image	down.	Perhaps	additional	fine-tuning	would	have	
narrowed	the	band	still	more.		Nonetheless	this	run	at	64.9	was	judged	to	be	
perfectly	periodic	for	all	practical	purposes.		The	plot	was	cleared	at	t=1320	and	
allowed	to	continue	until	t=1362.		During	that	time	the	pattern	was	redrawn	about	
twice	suggesting	the	system	had	a	period	of	either	21	or	42	seconds.		I	have	no	
explanation	for	why	the	patterns	differ	a	bit	each	time	they	are	drawn	while	still	
staying	within	the	band.		Its	possible	the	system	is	indeed	perfectly	periodic	but	has	
a	period	significantly	longer	than	21	or	42	seconds.		Within	that	longer	period	it	
might	draw	a	series	of	slightly	offset	patterns	thus	creating	the	band,	and	then	
exactly	repeat	that	series	over	and	over.		Alternately	the	trace	may	wander	
randomly	within	that	band	and	never	exactly	follow	the	same	path	twice,	as	seems	
to	be	the	case	with	the	Lorenz	strange	attractor	
	
Its	possible	that	the	arms	produce	perfectly	periodic	operation	when	synchronized	
so	their	swings	follow	integer	ratios	like	1:1,	1:2,	1:3,	2:3	and	the	like.		A	deliberate,	
and	successful,	attempt	was	made	to	get	them	to	swing	in	1:1	and	1:2	ratios	by	
experimenting	with	different	initial	conditions.		Its	described	just	below	and	did	
result	in	a	simple	perfectly	periodic	oscillation.		This	topic	merits	further	research.	
	
It	was	very	difficult	to	judge	the	period	of	these	oscillations	meaning	the	time	it	took	
to	draw	a	pattern	that	would	repeat.		This	partly	had	to	do	with	the	fact	that	the	ke2	
plots	are	not	the	same	as	regular	phase	space	plots	because	ke	is	always	a	positive	
number.		Thus	the	negative	values	which	ideally	should	be	below	the	line	are	
reflected	above	it.		Take	the	values	I	picked	as	periods	–and	marked	on	some	of	
these	plots	with	notations	like	P=6.7	sec-	with	that	in	mind.	
	
Now	we	put	these	perfectly	periodic	runs	in	context	relative	to	what	happened	
when	the	energy	level	was	between	the	values	that	gave	perfectly	periodic	behavior.		
Figure	13	shows	some	windows	of	perfectly	periodic	operation	which	were	
discovered	with	default	initial	conditions	except	for	the	release	angle	a1,	which	was	
raised	from	6.6	degrees	to	51.4.		The	runs	shown	at	left	were	close	to	perfectly	
periodic	for	80	seconds.		The	runs	on	right	show	that	between	these	energy	levels	
the	system	was	quasi-periodic.		The	upper	right	plot	shows	that	the	system	traced	
some	patterns	more	often	than	others.		This	phenomena	was	not	explored	further.	
This	slide	provides	the	main	data	in	support	of	the	general	finding	that	the	double	
pendulum	is	quasi-periodic	over	the	vast	part	of	its	operating	range	from	low	to	
high	energy,	except	for	very	narrow	windows	where	its	perfectly	periodic.			
	
This	is	perhaps	analogous	to	the	periodic	windows	in	the	bifurcation	diagram	for	
the	logistics	equation	and	Rosller	system,	which	suggests	a	common	root	cause.			
	
	
Angle	51.4	details:	
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By	accident	one	run	producing	a	beautiful	almost	symmetrical	plot	indicating	what	
looked	like	nearly	perfect	periodic	behavior.		See	the	screenshot	below	(T=78.13).		It	
was	discovered	when	the	red	pendulum	was	released	from	an	angle	of	51.4	degrees	
and	mass2	was	left	at	the	default	value	of	1.0.		Because	mass	2	was	set	at	1.0	not	0.5	
the	first	two	runs	below	differ	from	most	the	rest	in	this	section.		The	trace	went	
round	and	round	this	pattern	time	after	time	retracing	the	same	line	indicating	this	
behavior	was	periodic	not	only	as	to	wave	shape	but	also	the	values	accurately	
repeated.	The	waveform	was	obviously	complex	during	that	period.	
	
We	haven’t	found	many	example	of	near	perfect	periodic	operation	in	our	
explorations	of	the	double	pendulum	so	this	one	is	worth	examination.		Is	it	fragile	
in	the	sense	that	any	small	change	in	the	energy	level	or	one	of	the	so	called	
constants	like	pendulum	mass	will	destroy	it?							
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The	screenshot	below	(T=196.58)	was	the	same	run	but	showing	the	relation	
between	a2	and	a1.		Again	the	trace	repeated	took	virtually	the	same	path.	Its	not	
perfectly	periodic	its	sufficiently	close	to	call	it	so.		A	very	small	adjustment	in	angle	
1	would	probably	yield	perfection.	
	

	
	
The	screenshot	below	(T=262.07)	was	taken	later	in	this	same	run.		It	plots	angle	2	
over	time	to	expose	determine	the	period	of	this	oscillation.	Measuring	between	the	
major	crests,	shows	that	the	period	of	this	behavior	is	about	25	seconds	after	which	
the	trace	begins	retracing	the	same	pattern.			
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Slide	13	shows	that	behavior	was	quasi-periodic	between	the	narrow	windows	of	
perfectly	periodic	operation.	
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angle	64.9	details:		There	four	screenshots	demonstrate	that	the	system	was	very	
close	to	perfectly	periodic	at	64.9	degrees.		The	same	was	true	at	65.5	degrees	and	
presumably	values	in	between.		It	took	about	15	seconds	to	complete	the	initial	

Slide	13		
Some	perfectly	
periodic	windows	

Runs	made	with	default	values:		
L1,L2,	M1,	M2=1.		a2=0.		drag=0	

Perfectly	periodic	runs	

Quasi-periodic	runs	
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pattern.			The	last	three	screenshots	show	that	once	the	band	had	widened	to	a	
certain	amount	it	didn’t	widen	any	further.		There	is	more	analysis	on	this	later.	
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9.4	SDIC	testing	
	
This	sub-section	reports	the	results	of	testing	for	SDIC	with	m2=1	in	order	to	see	
how	they	differ	from	SDIC	tests	done	with	m2=0.5	in	Section	8.2.	
	
The	table	below	shows	when	SDIC	effects	were	first	noticed.		There	was	no	SDIC	
evident	in	runs	where	a1	was	below	66	degrees.		At	and	above	66	degrees	all	runs	
exhibited	SDIC	and	were	therefore	chaotic.		
	
Angle	a1	
(With	A2=0,	
m1=m2=l1=l2=1)	

Time	at	which	waveforms	first	diverged	
enough	to	notice	SDIC	effects	

20	 None	by	120	seconds	
40	 Minor	effects	seen	at	1100	
60		 None	by	250	
65	 None	by	560			(was	perfectly	periodic)	
66	 91																					(System	first	became	chaotic)	
67	 71	
70	 42	
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80	 53	
100	 23	
105	 14	
110	 12	
120	 7.5	
	
This	table	presents	some	additional	data	that	might	be	useful	in	discovering	the	root	
cause	of	chaos	in	the	double	pendulum,	namely	the	time	at	which	SDIC	effects	first	
occurred,	or	more	precisely	when	I	was	first	able	to	notice	them	visually.		However	
its	entirely	possible,	and	I	think	probable,	that	the	waveforms	began	to	diverge	right	
after	the	simulation	run	began.		If	so	they	grew	exponentially	at	about	the	time	
noted	in	the	table	and	became	visually	obvious.		This	seemingly	exponential	growth,	
as	opposed	to	a	sudden	jump,	is	I	think	key	to	understanding	the	root	cause.		I	want	
to	say	the	system	has	reached	some	sort	of	tipping	point	in	the	phase	relationships	
between	all	the	variables,	but	I	can’t	picture	it.	
	
To	highlight	this	concept	of	exponential	growth	I	examined	the	waves	more	
carefully	and	marked	with	arrows	–	in	the	screenshots	below-	some	very	minor	
differences	that	occurred	before	the	times	I	recorded	in	the	table.		
	
I’ll	say	this	again	later	but	I	suspect	that	plotting	the	waveforms	for	sheer	force	in	
the	middle	pivot	alongside	the	waveforms	of	the	other	variables	should	be	done	for	
a	few	seconds	before	and	after	the	times	in	the	table,	and	then	examined	carefully	to	
see	what	is	changed	and	why.		Comparisons	would	be	made	for	the	base	run	and	
then	one	with	slightly	different	initial	conditions.		In	addition	comparisons	would	be	
done	between	a	run	that	was	sub-chaotic,	(like	the	60	degree	run)	and	one	that	was	
chaotic	like	the	66	degree	run.	
	
The	series	of	slides	below	contain	screenshots	of	the	runs	used	to	produce	the	table	
above.		Usually	the	left	images	show	the	base	run	and	the	right	ones	show	the	
results	of	having	a	slightly	different	initial	condition,	namely	setting	a1	one	
hundredth	of	a	degree	higher.		Ideally	all	the	runs	would	have	been	equally	long	at	
low	energy	to	see	if	SDIC	emerged	after	a	long	time.		That	wasn’t	convenient.	
	
20	degree	runs:	
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40	degrees:	

Slide	73	
Development	of	SDIC	at	
angle	20	
	

SDIC	had	not	become	evident	by	80	
seconds	and	was	s<ll	not	evident	
when	run	ended	at	120	seconds.		It	
might	occur	much	much	later.	
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Slide	74	
SDIC	at	40	degrees?	(a)		

Minor	waveform	divergence	or	
SDIC		appears	at	or	before	t=488	

A2=0,		m1=m2=l1=l2=1	
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60	degrees:		Note	how	the	trace	stayed	within	a	band	during	the	time	it	was	
plotted.		In	watching	the	trace	make	these	patterns	it	did	not	appear	to	be	expanding	
the	width	of	the	bands	but	rather	infilling	them.		That	might	change	in	the	long	term.	
	

Slide	75		
SDIC	at	40	degrees?	(b)	
	

Out	to	t=1113	there	is	only	very	
minor	waveform	divergence	
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Angle	65:		This	long	run	showed	no	evidence	of	SDIC.		It	also	turned	out	to	be	nearly	
perfectly	periodic.		In	this	case	the	bands	had	developed	by	t=421	but	did	not	widen	
thereafter.		This	suggests	that	these	bands	do	not	necessarily	continue	to	widen	over	
time.		That	in	contrast	to	other	runs	where	they	do	widen	and	eventually	fill	the	
entire	envelope.		In	an	ffort	to	better	understand	chaos	in	the	double	pendulum	it	
would	be	helpful	to	have	a	long	series	of	ke2/a1	partial	phase	space	diagrams	like	
these	made	from	fairly	long	runs	at	slightly	increasing	energy	levels.		They	might	be	
made	into	a	movie.		It	would	show	how	the	bands	constrict	as	the	system	
approaches	perfect	periodicy,	and	where	they	grow	to	fill	the	entire	envelope.			
	

Slide	76	
Development	of	SDIC	at	
angle	60	
	

SDIC	had	not	become	evident	
when	run	ended	at	250	seconds.		
Traces	staying	within	bands.	
Judged	as	quasi-periodic.	
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Angle	65.5:		Retroactively	I’ve	added	the	results	of	a	run	at	65.5	degrees.		It	turned	
out	to	be	almost	perfectly	periodic,	since	the	trace	stayed	within	a	narrow	band	
during	a	long	683-second	run.	
	
NOTE	THIS:	As	shown	below	the	system	became	chaotic	when	a1	was	raised	only	
one	half	degree	more	to	66	degrees.		Going	from	perfectly	periodic	to	chaotic	with	
only	a	very	small	increase	in	a1	-and	thus	in	energy-	is	worthy	of	note	and	may	be	
important	in	trying	to	understand	the	root	cause	of	chaos.		

Slide	106	
Development	of	SDIC	
at	angle	65	
	

Stayed	perfectly	periodic	with	
no	SDIC	so	far,	thus	hasn’t	
become	chao?c.	

A2=0	m1=m2=l1=l2=1	

Period	was	about	14	seconds	

There	was	no	change	in	width	of	bands	
from	t=421	to	t=1200	
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We	now	have	two	configurations	that	were	perfectly	periodic	just	before	they	
became	chaotic.		It	would	be	very	interesting	to	know	if	all	double	pendulum	
configurations	behave	this	way.		
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Angle	66:		SDIC	effects	did	not	appear	during	the	first	90	seconds,	but	became	quite	
apparent	after	t=91.		That	makes	66	degrees	the	threshold	to	chaos	for	this	
particular	set	of	bob	masses,	arm	lengths	and	other	initial	conditions.			With	fine	
tuning	the	threshold	may	have	been	at	a	slightly	lower	angle	like	65.7	degrees	and	if	
so	it	probably	would	have	taken	longer	to	manifest	SDIC.		
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Slide	104	
Development	of	SDIC	at	
angle	66	
	

SDIC	and	thus	chaos		
evident	a8er	t=91	

A1=0,	m1=m2=l1=l2=1	
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The	time	it	takes	for	the	waveforms	to	diverge,	in	other	words	for	the	effects	of	SDIC	
to	manifest,	increases	as	the	delta	in	initial	conditions	becomes	smaller.		This	seems	
intuitively	obvious.		With	a	delta	in	a1	of	0.01	degrees	it	took	91	seconds.		With	a	
delta	of	0.0001	degrees	it	took	somewhere	between	100	and	200	seconds.		Slide	111	
has	the	relevant	screenshots.	
	
With	a	difference	in	initial	conditions	of	only	0.0001	degrees	this	is	obviously	a	good	
example	of	sensitive	dependence	on	initial	conditions.	
	

Slide	105	
Development	of	SDIC	at	
angle	66	
	

Run	had	significant	SDIC	and	
thus	was	chao;c.	

A2=0	m1=m2=l1=l2=1	
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Here	is	the	long-term	plot	of	ke2/a1:		It	shows	that	chaotic	operation	ends	up	filling	
the	entire	envelope	with	traces	because	each	cycle	is	different	from	those	before.		Its	
evident	from	the	sparse	traces	at	top	that	peak	or	spike	values	of	ke2	are	rare.		
	

Slide	111	
SDIC	development	at	66	
degrees	with	delta	a1	of	only	
0.0001	degrees	

With	much	smaller	delta	in	ini?al	
condi?ons	it	took	longer	for	SDIC	effects	
to	become	evident.			
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67	degrees:		This	time	it	took	less	time	for	SDIC	effects	to	manifest,	namely	71	
seconds.		Differences	in	wave	shape	and	magnitude	can	be	seen	after	that.	
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Slide	102	
Development	of	SDIC	
at	angle	67,	part	1	

With	a2=0,	m1=m2=l1=l2=1	

Very	li>le	SDIC	evident	so	
far	
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70	degrees:	SDIC	at	about	42	seconds.	
	

Slide	103	
Development	of	SDIC	at	
angle	67,	part2	
	

SDIC	effects	appear	before	
t=71	but	jump	significantly	at	
that	point	

A2=0	m1=m2=l1=l2=1	
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80	degrees:		Differences	can	be	seen	in	the	actual	bob	paths.		SDIC	is	noted	at	about	
53	seconds.		This	is	out	of	line	with	the	declining	trend	so	far.		It	may	or	may	not	be	
significant.			
	

Slide	80		
SDIC	at	70	degrees?	

Signs	of	SDIC	appear	at	t=42	and	
waveform	completely	different	
by	t=100	
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100	degrees:		The	messy	ke2/a1	plot	is	typical	of	a	chaotic	double	pendulum	plot.	
There	is	however	some	element	of	pattern	in	these	plots	as	one	watches	them	form.		
Perhaps	its	like	watching	the	Lorenz	strange	attractor	in	action.		It	too	has	a	pattern	
that	repeats	in	a	general	way,	namely	spiraling	around	in	one	wing	until	it	crosses	
the	center	line	and	jumps	to	the	other	wing.			
	

Slide81	
SDIC	at	80	degrees?	

SDIC	appears	at	t=53	and	bob	path	
completely	different	at	t=60	
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110	degrees:	
	

Slide	82		
SDIC	at	100	degrees	

SDIC	first	appears	at	t=24.		Note	the	
difference	in	OTT	events	therea?er.		

KE	plot	inserted	for	
interest.		Hard	to	ascribe	
meaning	to	it.	Although	
chaoIc	at	100	degrees	
there	is	evidence	of	
approximate	paKern	
repeIIon	over	this	first	
80	seconds.	
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120	degrees:	
	

Slide	83		
SDIC	at	110	degrees	

SDIC	appears	at	t=	11.		
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This	contrasts	the	bob	paths	during	the	first	20	seconds	and	is	graphic	illustration	of	
how	SDIC	affects	the	actual	physical	behavior	of	the	system.	

Slide	84		
SDIC	at	120	degrees	

SDIC	first	appears	at	t=7.5.	
Note	difference	in	OTT	events	
due	to	SDIC	
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9.5	Impact	of	becoming	chaotic	
	
Perhaps	one	of	the	more	important	reasons	to	study	chaos	theory	it	to	learn	what	
the	consequences	when	a	historically	periodic	or	quasi-periodic	system	becomes	
chaotic	as	a	result	of	adding	energy	to	it.		The	notion	that	global	warming	might	
cause	some	important	environmental	or	ecological	system	to	become	chaotic	makes	
this	important	to	understand.	
	

Slide	85		
Effect	of	SDIC	on	arm	posi4ons	
in	120	degree	runs	

Example	of	how	SDIC	makes	
predic4on	of	exact	future	
situa4on	impossible,	even	over	
this	short	20	second	run.		Both	
bob	posi4ons	and	paths	are	much	
different.	
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However	to	put	this	in	perspective	we	need	to	know	two	things	first.		Is	the	system	
now	periodic	or	quasi-periodic	and	if	so	how	close	is	it	to	becoming	chaotic.		How	
close	to	crossing	the	threshold?		We	can	probably	answer	both	for	the	solar	system,	
but	that	isn’t	a	concern	I’ve	read	about,	possibly	because	the	system	changes	so	
slowly.		
	
Some	earth	systems	like	global	temperature	are	apparently	quasi-periodic	on	
timeframes	of	thousands	of	years	due	to	variations	in	solar	radiation,	earth	sun	
distance,	and	earths	tilt.		I	set	them	aside	partly	since	they	are	not	things	we	can	
effect.			
	
Probably	the	largest,	most	massive	system	humanity	can	and	has	affected	is	climate	
by	virtue	of	greenhouse	gas	emissions,	which	are	slowly	raising	average	global	
temperatures.		I’ve	not	investigated	whether	global	temperature	is	oscillating	
because	its	just	one	variable	in	a	system	that	is	internally	oscillating	like	a	spring-
mass	system,	an	N-body	system,	or	a	double-pendulum.		The	carbon	cycle	could	be	
one	such	system.			Alternately	global	temperature	may	simply	be	responding	to	the	
variation	in	solar	radiation	caused	by	exogenous	forces	as	listed	above.		
Investigating	these	thoughts	is	beyond	the	present	scope.	
	
I	must	note	that	there	has	been	much	research	into	the	occasionally	chaotic	
behavior	associated	with	heart	rhythms	and	aerodynamic	flutter.		And	some	other	
systems	as	well.					
	
It	isn’t	easy	to	apply	anything	we	learn	from	studying	the	transition	into	chaos	of	
simple	systems	like	the	double	pendulum	to	more	complex	systems.		With	that	in	
mind	what	follows	is	a	brief	look	at	the	former.		My	approach	was	first	to	compare	
behavior	of	the	double	pendulum	when	it	was	sub-chaotic	versus	when	it	was	
chaotic.		Would	there	be	any	notable	differences	in	the	way	the	system	oscillated?		
The	second	was	an	attempt	to	model	the	system	as	it	transitioned	from	sub-chaotic	
to	chaotic	and	see	if	anything	dramatic	happened	at	that	point.			
	
None	of	this	produced	any	dramatic	results	but	its	worth	presenting	anyway.		I	still	
feel	its	an	important	question	and	hope	others	will	investigate	it	thoroughly.	
	
Slide	109	compares	waveforms	of	the	double	pendulum	when	it	was	sub-chaotic	
and	quasi-periodic	in	a	run	with	a1	set	to	60	degrees	to	a	chaotic	run	made	with	a1	
at	70	degrees.		The	short-term	view	showing	just	a	few	cycles	shows	the	behavior	is	
virtually	identical.		The	system	oscillates	at	the	same	frequency,	the	waves	are	no	
more	sharp	or	rounded.		Their	heights	vary	about	the	same	amount	from	one	cycle	
to	the	next.			This	suggests,	not	proves,	that	the	transition	into	chaos	would	hardly	
be	noticed	in	the	short	term	by	anyone	depending	on	this	system.		
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At	first	glance	the	longer-term	behavior	doesn’t	seem	radically	different	either.		The	
peaks	and	valleys	grow	a	bit	in	magnitude	but	that’s	because	the	level	of	energy	has	
changed	by	a	significant	percent.		The	frequency	remains	the	same.		The	heights	of	
the	peaks	seem	to	vary	about	the	same	percent.		However	close	inspection	shows	
that	the	60	degree	run	has	a	repetitive	pattern	which	produces	two	high	peaks	
separated	by	two	lower	ones,	then	two	highs	separated	by	one	low	and	so	forth.		In	
contrast	the	70	degree	run	is	much	less	consistent	because	its	chaotic.		
	
Slide	110	conveys	much	the	same	overall	message.		The	short-term	pattern	of	
behavior	is	much	the	same.		In	the	long	term	the	values	change	over	a	wider	range.	

Slide	109	
Sub-chao)c	vs.	chao)c	
x2	waveforms	
	

A2=0	m1=m2=l1=l2=1	

Chaos	threshold	is	66	degrees.		
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Next	it	was	decided	to	try	simulating	a	system	transitioning	thru	the	chaos	barrier.	
The	model	didn’t	support	the	gradual	addition	of	energy	but	it	did	support	its	
gradual	diminution	by	allowing	frictional	drag	to	be	included.		It	was	assumed	that	
the	transition	from	sub-chaotic	to	chaotic	would	be	a	mirror	image	of	the	transition	
from	chaos	to	sub-chaos.		We	know	that	the	system	was	chaotic	when	started	at	70	
degrees	and	since	the	overall	wave	height	dropped	to	less	than	it	was	in	the	60	run	
it	should	have	been	sub-chaotic	at	the	end.		Just	were	the	transition	occurred	is	
uncertain.		I	simply	marked	my	best	guess.		IF	this	represents	reality	then	nothing	
dramatic	would	happen	if	the	double	pendulum	had	enough	energy	added	to	make	

Slide	110	
Sub-chao)c	vs.	chao)c	
	ke2/a1	pa4erns	
	

Chaos	threshold	is	66	degrees.		
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it	chaotic.			Viewing	the	real	pendulum	gives	further	support	to	this	finding.		Its	
movement	is	fluid	as	it	slows	from	wildly	chaotic	to	a	stop.			
	
	

	
	
The	following	run	started	from	a	still	higher	energy.		It	transitioned	the	threshold	
without	any	noticeable	impact	on	the	waveform.			
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IF these results apply to real-world systems it suggests there would be no 
drastic and immediate change in behavior if they were driven into chaos by the 
addition of energy.   I cannot reconcile this opinion with the drastic change that 
occurs when a regularly beating heart becomes arrhythmic.		Perhaps	that’s	an	
entirely	different	situation.			

	
9.6		Impact	of	becoming	capable	of	OTT	events	
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Slide	113	shows	the	results	of	examining	the	waveforms	above	and	below	the	
energy	level	needed	to	cause	occasional	OTT	events,	as	was	also	done	in	section	8.2.		
Again	no	significant	differences	were	observed.	

	

		

	

Slide	113	
Sub	and	post	OTT	capable	
waveforms	with	m2=1	
	

This	configura=on	becomes	
chao=c	with	a1>66	and	can	go	
OTT	with	a1>90	



9-46	

9.7		Are	calms	and	spikes	generic	to	chaos?	

One	of	the	most	significant	aspects	of	chaotic	oscillation	is	the	way	in	which	a	
variable	can	oscillate	gently	for	some	random	length	of	time	and	then	suddenly	
spike	to	a	much	higher	value.		Its	analogous	to	the	500-year	storm,	the	prolonged	
draught	ending	with	a	flood,	or	a	major	stock	market	crash.			
	
I’ve	noticed	such	behavior	in	a	number	or	runs	and	emphasized	this	type	behavior	
before.		Nevertheless,	like	it	seems	like	everything	else	about	double	pendulum	
behavior	I’m	not	certain	that	calms	of	random	lengths	interrupted	by	one	or	more	
spikes	is	always	the	case	when	the	system	is	chaotic.		Thus	as	I	near	fishing	this	
book	I’ve	conducted	a	few	more	runs	to	better	explore	this	question.		These	are	
presented	below.	
	
This	screenshot	is	from	a	68-dress	run	just	over	the	threshold	with	barely	enough	
energy	to	exhibit	SDIC	and	thus	be	classified	as	chaotic.		Obviously	there	are	no	long	
calm	periods	and	the	spikes	occur	on	a	fairly	regular	basis.		In	this	particular	case	if	
a	system	gained	enough	energy	to	cross	the	threshold	into	chaos	one	might	not	
notice	much	of	a	change	in	behavior,	in	other	words	we	wouldn’t	suddenly	be	faced	
by	random	length	calm	periods	followed	by	spikes.		That’s	important	because	our	
greatest	concern	might	be	to	know	if	something	like	global	warming	might	tip	some	
natural	system	into	chaos	what	the	effect	might	be.		
	
It	also	suggests	that	a	defining	aspect	of	chaos	may	not	be	those	calms	and	spikes,	
which	I	had	previously	though	were	generic	to	chaos.		(This	subject	is	full	of	
complicating	surprises,	and	hoping	to	simplify	things	with	generalizations	is	
dangerous.)	
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This	run	with	a1=100	doesn’t	show	and	noticeable	calm	periods.		The	blue	bob	had	
just	spun	over	the	top	four	times	when	the	screenshot	was	taken.		Y2	only	needs	to	
reach	zero	for	that	to	occur.			
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This	run	with	a1=170	is	strongly	chaotic	and	now	we	do	see	random	length	calms	
highlighted	by	green	bars.		Notice	the	intense	spikes	that	end	the	first	two	calms.		
Notice	also	that	really	high	spikes	occur	relatively	rarely.		Contrast	this	waveform	
with	the	68	degree	one	above.		They	are	both	chaotic	but	clearly	different.	
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This	is	the	first	40	seconds	from	that	same	run.		
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Its	interesting	to	speculate	about	what	this	might	mean	IF	it	applied	to	a	real-world	
system.		For	example	assume	some	natural	system	like	climate	behaved	this	way.		
Perhaps	the	green	represents	a	long	period	with	relatively	consistent	rainfall,	and	
we	have	grown	to	take	that	for	granted.		The	economic	system	and	folks	in	general	
have	assumed	it	will	continue	forever.		Then	all	of	a	sudden	–and	with	no	gradual	
increase	to	warn	us-	we	suddenly	get	severe	floods	or	draughts.		
	
If	this	type	of	behavior	does	not	apply	to	important	real-world	systems	then	
this	exercise	in	analyzing	a	toy	system	may	have	little	practical	value.		
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The	waveform	below	was	from	an	even	higher	energy	run	that	was	strongly	chaotic	
as	well.		The	random	peaks	and	valleys	we	see	is	typical	of	chaotic	operation.		While	
there	are	somewhat	quieter	periods	they	don’t	seem	as	clearly	demarked	or	
dramatic	as	in	the	170-degree	run	above.			
	

	
	
This	set	of	runs	show	that	chaos	in	the	double	pendulum	does	not	always	result	in	
waveforms	with	noticeable	calm	periods	interrupted	at	random	by	spikes.		Further	
investigation	is	needed	to	better	map	this	behavior	and	find	out	what	conditions	do	
produce	waveforms	with	well-defined	calms	and	spikes.			

	

9.8		Is	quasi-periodic	behavior	actually	perfectly	periodic	
in	disguise?	

This	is	another	topic	I	just	thought	to	address	briefly	when	this	section	was	
supposedly	finished.		I’ve	noticed	in	a	number	of	runs	that	what	I	have	sometimes	
called	quasi-periodic	and	sometimes	called	perfectly	periodic	produce	a	ke2/a1	
partial	phase	space	plot	where	all	the	traces	stay	confined	within	bands.		Two	
examples	are	as	follows.		Each	run	lasted	long	enough	that	if	the	trace	was	going	to	
go	outside	the	band	it	presumably	should	have	done	so	in	less	time	than	these	runs	
lasted.			
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It’s	a	subjective	call	but	generally	if	the	trace	stayed	within	a	narrow	band	I	teneded	
to	label	the	run	as	perfectly	periodic.		If	the	band	was	wide	I	called	it	quasi-periodic.		
Before	now	I	hadn’t	giving	much	thought	about	what	the	traces	might	be	doing	
within	those	bands.		

Now	I	think	there	are	at	least	two	possibilities.		First,	the	trace	may	be	wandering	
around	chaotically	within	the	band,	possibly	never	tracing	the	same	path	twice.		
This	could	cause	it	to	eventually	fill	in	the	entire	band.		Perhaps	every	new	trace	
would	fit	between	previous	ones	reminiscent	of	the	way	it	apparently	does	in	the	
strange	attractor	for	the	Lorenz	equations.		Perhaps	this	is	a	fractal	structure.			
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However	the	alternative	may	be	that	the	band	is	filled	by	a	series	of	similar	shaped	
but	not	identical	patterns	and	that	sequence	of	patterns	does	exactly	repeat	time	
after	time.		If	so	the	behavior	might	actually	be	perfectly	periodic	behavior	in	
disguise.		The	real	period	length	would	be	the	sum	of	the	times	needed	to	produce	
each	pattern	in	that	sequence.	

To	explore	this	a	bit	consider	the	following	three	screenshots	for	a	run	I	chose	to	call	
perfectly	periodic.		It	was	made	at	64.9	degrees,	slightly	less	than	needed	to	make	it	
chaotic.		Despite	labeling	it	perfectly	periodic	the	pattern	did	not	replicate	over	and	
over	exactly	so	as	to	form	a	single	line	but	at	times	the	successive	patterns	were	
slightly	different	causing	them	to	fall	within	a	narrow	band.		The	first	screenshot	
shows	the	trace	as	it	paints	most	the	initial	pattern.		The	“period”	to	complete	this	
pattern	was	about	15	seconds.	

	

This	shows	those	wider	bands	after	1364	seconds.		That	a	long	run	and	if	the	trace	
was	going	to	widen	the	bands	it	should	have	had	time	to	do	so.	
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Nevertheless	the	run	was	continued.		Here	it	is	after	1645	seconds.	
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And	finally	after	2537	seconds.		
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It	seem	unlikely	that	allowing	it	run	still	longer	would	have	widened	these	already	
fairly	narrow	bands	any	wider.			

Now	I	propose	a	way	to	see	if	the	wide	bands	are	actually	formed	by	a	series	of	
slightly	different	patterns	that	repeats	time	after	time	thus	making	this	a	perfectly	
periodic	run,	albeit	with	a	period	that	is	some	multiple	of	the	time	it	took	to	
complete	just	one	pattern,	which	was	roughly	15	seconds.	
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Lets	focus	on	the	band	between	A	and	B	in	the	screenshot	above.		Its	of	course	very	
crude	but	the	band	between	A	and	B	appears	about	4	times	wider	than	where	it	
narrows	most.	(Obviously	the	pixel	size	gets	involved	here).		Thus	it	seems	possible	
that	what	we	are	seeing	is	4	slightly	different	patterns	that	lie	almost	atop	each	
other.		Where	the	band	is	widest	they	are	slightly	different.		Where	the	band	is	
narrowest	they	are	virtually	identical.		The	time	needed	to	complete	each	pattern	is	
about	15	seconds	so	if	four	of	them	overlap	the	real	period	needed	to	complete	this	
pattern	was	60	seconds.		In	other	words	this	was	perfectly	periodic,	not	quasi-
periodic,	behavior	with	a	period	of	60	seconds.		If	it	took	5	cycles	to	make	this	
pattern	the	period	was	75	seconds.		If	it	took	ten	cycles	the	period	was	150	seconds.			

The	bands	in	the	25-degree	run	shown	above	were	considerably	wider	and	eyeball	
inspection	suggests	it	would	have	taken	at	least	20	slightly	offset	patterns	to	
produce	those	wide	bands.		Thus	if	the	first	pattern	took	say	15	seconds	this	run	
might	have	a	period	of	300	seconds.		Whatever	it	did	in	that	300	seconds	would	
repeat	over	and	over	again	making	it	perfectly	periodic.	
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So	how	might	we	test	this	possibility?		I	thinks	its	simple.		First	pick	a	point	“A”	
where	the	band	is	widest.		When	the	trace	reaches	there	begin	recording	the	actual	
numerical	values	of	the	variable	a1	for	every	computational	step,	to	say	three	
decimal	places.		The	first	value	could	be	labeled	“a1-0”.		Then	every	time	a	new	value	
of	a1	is	computed	record	it.		Do	this	for	100	computational	steps	and	put	the	results	
in	a	table.		Continue	running	the	model,	and	then	when	the	trace	approaches	A	again	
begin	to	compare	the	new	values	of	a1	with	a1-0.		Do	this	at	every	computational	
step	looking	for	an	exact	match.		If	an	exact	match	is	found	see	if	the	following	99	
also	match	the	remaining	99	in	that	table.		If	they	do	then	the	system	is	close	to	
being	perfectly	periodic	since	the	trace	has	begun	follow	along	exactly	the	same	
path	as	it	did	once	before.		The	length	of	that	period	would	be	easy	to	measure.		
Finally	continue	to	run	the	model	to	verify	that	the	100	values	in	the	table	repeat	
periodically.		

Again	the	point	of	doing	this	is	simply	to	determine	if	what	looks	like	quasi-periodic	
oscillation	is	actually	perfectly	periodic	operation	with	longer	periods	than	one	
might	think.						

	
	
9.9	Ideas	about	root	cause	of	chaos	
	
This	and	the	next	two	sections	are	no	longer	a	simple	descriptions	of	behavior	as	
observed	from	the	simulation	runs.		Rather	they	contains	several	speculative	
thoughts.	
	
Unfortunately	I	haven’t	discovered	the	root	cause	yet	nor	has	anyone	else	to	my	
knowledge.		Gleick	says	even	the	experts	don’t	know.		I	believe	the	explanation	–if	
and	when	its	found-	will	be	relatively	simple,	although	subtle.		
	
Nevertheless	the	following	two	ideas	may	help	lead	someone	else	to	an	answer.		If	
so	it	would	apparently	be	the	first	time	the	root	cause	of	chaos	in	some	real-world	
system	has	been	explained.	(I	feel	the	spider-web	looking	diagram	used	to	explain	
the	Logistics	equation	is	inadequate	or	irrelevant	since	its	not	a	real	system.)		I	
haven’t	the	time	or	simulation	models	to	investigate	these	two	ideas	any	further.	I	
hope	someone	else	will.	
	
	
Idea	#1:			
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We	begin	by	noting	that	the	double	pendulum	does	not	show	visible	SDIC	effects	
immediately	after	the	bobs	are	released.		Instead	the	waveforms	appear	virtually	
identical	for	a	while.		Perhaps	they	do	differ	from	the	beginning	but	the	difference	
grows	exponentially	and	only	becomes	apparent	after	some	time	has	elapsed.		This	
clearly	shows	in	the	screenshots	below.		The	red	arrows	mark	where	I	first	noticed	a	
difference.		The	earlier	waveform	to	the	left	looks	identical	at	first	glance	but	with	
care	one	can	see	minor	differences	in	the	heights	of	the	wave	peaks.		This	suggests	
that	at	some	time	the	difference	grew	exponentially,	so	fast	that	it	almost	happened	
instantly.		In	the	angle	67	run	I	said	it	happened	at	t=71.			
	
	

	

Slide	67	
Development	of	SDIC	at	
angle	70	
	

SDIC	becomes	apparent	42	
seconds	into	the	run.		
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Why	would	a	behavior	change	suddenly	after	some	time	had	passed?		It	seems	a	
tipping	point	of	some	sort	might	be	involved.			My	analogy	for	a	tipping	point	is	
rolling	a	ball	up	a	dome	shaped	hill.		If	it	lacks	sufficient	energy	it	reaches	some	
altitude	short	of	the	ridge	top	and	rolls	back.		With	more	energy	it	gets	near	the	top	
and	accelerates	back	slowly	since	the	hill-top	is	gently	rounded	and	almost	flat	at	
that	point.		Nevertheless	it	retraces	its	route	back	down.		However	if	it	has	sufficient	
energy	it	will	just	reach	the	top	and	barely	go	over.		It	then	has	a	very	different	
future	as	it	rolls	down	the	far	side.			

Slide	69	
Development	of	SDIC	at	angle	67	
From	t=65	to	t=87		(2	of	3)	
	

SDIC	first	becomes	apparent	
a@er	about	71	seconds	
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Somehow	in	the	movement	of	the	double	pendulum	I	suspect	there	is	such	a	tipping	
point,	or	maybe	many	of	them.		If	the	system	lacks	sufficient	energy	it	doesn’t	reach	
any	of	them	and	remains	quasi-periodic	and	absent	of	SDIC.		At	a	certain	energy	
level	it	is	just	able	to	surmount	the	ridge,	with	any	less	it	can’t.		
	
I	suspect	the	way	to	better	understand	this	is	to	plot	the	sheer	force	on	the	pivot	
between	the	two	arms	to	see	how	it	varies	as	the	arms	incrementally	approach	the	
point	on	the	waveform	where	SDIC	first	becomes	apparent.		It	will	I	think	change	
exponentially	and	change	from	one	arm	pulling	the	other	to	one	arm	pushing	the	
other.					
	
As	to	why	it	takes	time	to	reach	the	tipping	point	and	display	SDIC	it	may	be	that	the	
system	must	evolve	through	a	dance	of	some	sort	until	its	reached.			
	
I’ll	let	it	go	for	now	except	to	say	this	is	a	very	simple	system.		We	can	track	its	
movements	and	all	the	forces	involved	very	accurately.		Something	simple	and	
tangible	must	be	causing	SDIC	effects	to	start	occurring.		I	don’t	believe	it’s	that	
complicated.			Exponential	changes	near	a	tipping	point	seem	core	to	the	
explanation.			
	
I	suppose	an	alternate	explanation	might	be	that	the	double	pendulum	is	always	
SDIC	regardless	of	energy	level.		A	very	small	difference	in	initial	conditions	like	a1	
would	grow	and	eventually	cause	the	waveforms	to	differ	enough	to	be	visible.		Its	
simply	an	exponential	process.		Very	exponential.		At	very	low	energies	it	takes	a	
very	very	long	time	for	SDIC	effects	to	become	visible.	For	example	some	very	small	
differences	in	the	waveform	occurred	over	400	seconds	into	a	sub-chaotic	run	made	
with	a1=40	and	m2=1.		See	details	in	Section	8.3.		Times	like	this	are	so	long	that	
observers	may	not	have	waited	for	these	small	effects	to	occur.		They	many	have		
prematurely	judged	that	SDIC	didn’t	exist,	and	that	the	system	was	not	chaotic.		
	
I	think	also	of	the	magnetic	pendulum	or	stars	transiting	a	field	of	others.		As	it	
passes	through	the	field	of	attracting	bodies	there	are	situations	where	it	can	go	
straight,	bend	left	or	bend	right.		It	may	have	a	wholly	different	future	trajectory	if	it	
tends	left	or	tends	left.		Going	perfectly	straight	is	akin	to	rolling	a	ball	along	a	ridge-
top	or	balancing	an	egg	on	end.		Its	very	hard	to	sustain.		
	
	
Idea	#2	for	root	cause:		
Figure	127	suggests	a	possible	way	to	identify	the	root	cause	of	chaos	in	the	double	
pendulum.		The	key	thought	is	that	at	levels	of	energy	adequate	to	make	the	system	
chaotic	the	system	reaches	occasional	tipping	points	where	a	very	small	difference	
in	conditions	at	that	point	will	cause	downstream	waveforms	to	differ	significantly.		
At	sub-chaotic	levels	of	energy	those	tipping	points	are	never	reached.		This	takes	
some	explanation.	
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Explanation	of	the	diagram:	The	upper	four	waveforms	represent	sub-chaotic	
operation	where	the	system	has	no	SDIC.		The	lower	four	show	chaotic	behavior.		
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The	A	and	B	waveforms	are	for	two	variables	in	the	system.		I	don’t	know	which	
ones	they	might	be.		My	favorite	candidate	for	one	would	be	the	sheer	force	on	the	
middle	pivot	because	I	suspect	it	changes	from	push	to	pull	and	that	might	
represent	a	tipping	point	in	the	system	dynamics.		A	second	choice	would	be	the	
angle	between	the	two	arms	which	when	it	passes	thru	zero	might	cause	a	tipping	
point.		Possibly	we	would	need	to	plot	three	variables.	
	
The	sub-chaotic	run	would	be	made	with	just	a	bit	less	energy	than	needed	to	make	
the	system	chaotic.		In	my	runs	it	was	perfectly	periodic	just	below	where	it	became	
chaotic	but	I	would	try	to	find	an	energy	level	in	the	narrow	space	between	perfectly	
periodic	and	chaotic,	if	one	exists.		If	not	I	would	run	it	slightly	below	where	its	
perfectly	periodic.		The	chaotic	runs	would	be	made	just	over	the	E	level	needed	to	
make	the	system	SDIC	and	thus	chaotic.		I’ve	determined	those	a1	or	energy	levels	in	
prior	sections	and	noted	them	on	the	slides.	
	
The	waveforms	are	plotted	from	the	beginning	of	a	simulation	run	marked	T	sub	
zero	out	beyond	the	time	needed	for	the	chaotic	system	to	develop	very	different	
waveforms	between	the	base	run	and	the	“delta”	run.		The	base	run	is	made	with	
some	set	of	initial	conditions	as	I	did	with	all	my	SDIC	tests.		The	“delta”	run	is	made	
with	one	of	the	initial	conditions	being	slightly	different.		Thus	if	I	made	a1=75	in	a	
base	run	I	set	it	to	75.01	in	the	delta	run.			
	
The	area	to	focus	on	will	be	at	T	sub	c.		That’s	where	SDIC	effects	–if	they	exist-	will	
first	become	obvious	when	comparing	the	base	waveform	with	the	delta	waveform.		
This	is	what	I	did	with	all	the	SDIC	tests	reported	earlier.		I	found	that	SDIC	effects	
didn’t	appear	immediately	after	the	run	was	started	but	rather	ramped	up	very	
quickly	after	a	certain	time	had	passed.		The	times	ranged	from	7.5	seconds	to	over	
50	seconds.		The	more	energy	the	shorter	the	time.			
	
Suspected	result:		My	premise	is	that	something	special	is	happening	when	the	
SDIC	effects	intensify	in	the	vicinity	of		T	sub	c.		And	that	something	might	appear	if	
one	compares	the	sub-chaotic	runs	with	the	chaotic	runs.		My	diagram	suggests	a	
possibility.		In	the	sub-chaotic	runs	the	A	and	B	waves	remain	apart,	whereas	in	the	
chaotic	runs	they	touch	or	overlap.		I	suspect	that	when	they	do	first	touch	or	
overlap	the	system	departs	on	a	different	behavior	in	the	base	case	than	in	the	delta	
case	because	the	point	at	which	they	touch	is	not	exactly	identical.		It	wouldn’t	be	
because	the	initial	conditions	are	not	exactly	identical.		Its	at	this	point	that	the	small	
delta	in	initial	conditions	is	magnified,	or	its	effects	are	magnified.		We	need	to	
examine	this	area	under	a	microscope	so	to	speak	and	see	exactly	what	is	
happening.		What	it	happening	at	T	sub	c		that	causes	the	downstream	waves	to	
differ	so	much.			I	envision	it	as	when	the	difference	between	two	variables	
approaches	zero.		Perhaps	its	analogous	to	a	situation	where	a	ball	is	rolled	up	to	a	
rounded	ridge	top,	where	the	slightest	difference	can	determine	whether	it	rolls	
back	or	over	the	other	side.		If	it	rolls	one	way	we	get	one	downstream	waveform.		If	
it	rolls	off	the	other	side	we	get	a	substantially	different	waveform.		
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To	me	this	explanation	helps	explain	why	the	sub-chaotic	runs	experience	no	SDIC.		
In	other	works	the	base	waveform	is	virtually	identical	to	the	delta	waveform	far	
into	the	future.		This	is	what	I	found	true	in	my	SDIC	tests.		The	reason	is	that	the	A	
and	B	waves	never	touched	so	no	tipping	point	was	reached.		Its	as	though	the	ball	
was	rolled	up	toward	the	ridge,	but	never	had	the	energy	to	reach	it.			
	
It	may	also	help	explain	why	the	chaotic	waves	appeared	identical	for	a	while	and	
then	suddenly	diverged	after	7.5	to	50	seconds	in	my	runs.		Perhaps	it	took	the	arm	
positions	and	speeds	that	long	to	reach	a	tipping	point	situation.				
	
	
9.10			The	essence	of	behavior	
			
Each	arm	in	a	double	pendulum	would	swing	with	an	even	rhythm	like	a	simple	
pendulum	because	once	raised	and	released	gravity	converts	potential	energy	to	
kinetic	energy.		However	since	they	are	attached	to	each	other	the	movement	of	arm	
A	disturbs	the	movement	of	arm	B,	and	vice	versa.		The	evolution	of	the	forces	one	
applies	to	the	other	are	very	hard	to	visualize	but	they	cause	energy	to	be	
transferred	back	and	forth	between	the	two	arms	in	a	manner	that	continually	alters	
what	would	have	been	their	natural	rhythm,	position	and	speed.		They	go	higher	
than	they	might	otherwise,	or	faster,	or	slower,	or	lower.		This	happens	at	all	energy	
levels	thus	making	the	waveforms	of	any	of	the	relevant	variables,	like	PE1,	PE2,	
KE1,	KE2,	vary	in	a	complex	manner.		On	occasion	the	position	and	speed	of	arm	A	is	
such	that	the	push	or	pull	applied	by	arm	B	will	cause	it	to	go-over-the-top	as	
opposed	to	falling	back	thus	creating	what	I	call	a	dramatic	event.		It’s	a	matter	of	
phase	relationships	between	oscillatory	motions.	
	
	
9.11		Possible	4-D	strange	attractor	
			
There	are	reasons	to	think	the	double	pendulum	behaves	like	the	Lorenz	
waterwheel	or	Lorenz	equations	in	the	sense	of	having	a	strange	attractor.		This	
leads	to	the	following	hypothesis:		The	double	pendulum’s	behavior	is	described	
by	a	four-dimensional	strange	attractor	similar	to	that	that	applicable	to	the	
Lorenz	equations.	
	
It	is	further	hypothesized	that	the	shape	of	this	attractor	morphs	as	the	level	
of	energy	in	the	system	changes	such	that	when	its	behavior	becomes	
perfectly	periodic	the	attractor	converges	to	become	a	single	line	in	4-D	space.		
If	viewed	in	3D	its	also	a	single	line,	as	it	is	in	the	2D	ke2/a1	plots.		A	
comparison	of	the	ke2/a1	plots	for	the	different	perfectly	periodic	runs	
suggests	that	the	attractor	will	have	a	different	shape	for	each	perfectly	
periodic	situation	and	morph	from	one	to	the	next.		A	long	series	of	ke2/a1	
plots	made	into	a	movie	would	be	helpful	in	showing	this	if	in	fact	its	true.	
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In	simple	English	this	means	that	the	four	variables	in	the	double	pendulum	evolve	
within	a	4-D	band	of	allowed	values	where	they	repeatedly	come	close	to	prior	
values	but	never	revisit	them	exactly.		Watching	a	video	of	the	Lorenz	strange	
attractor	in	action	illustrates	what	I	mean	by	this/				
	
The	reasons	for	offering	this	hypothesis	are	as	follows:	
	

1) The	notion	that	this	is	a	4-D	attractor	is	simply	because	there	are	four	
interacting	variables	in	the	double-pendulum.		Its	phase	space	plot	is	
presumably	four-dimensional.	

2) In	the	simulations	presented	above	the	trace	almost	never	seemed	to	repeat	
exactly.		The	traces	drifted	and	drew	patterns	offset	from	prior	ones,	but	they	
didn’t	drift	steadily	one	way	or	the	other.		Sometimes	they	went	outside	prior	
traces	but	often	they	fell	between	them.		This	happens	in	the	Lorenz	
butterfly,	which	is	a	3-D	strange	attractor.		The	fractal	notion	applies	because	
the	traces	can	come	increasingly	close	to	prior	ones	indefinitely,	but	they	
never	touch.		This	is	a	fractal	characteristic.	

3) The	behavior	of	the	double	pendulum	was	usually	what	I	originally	called	
pattern	periodic	in	that	the	trace	made	approximately	the	same	pattern	time	
after	time.		Now	I	use	the	conventional	term	quasi-periodic.	Similarly	the	
trace	in	the	Lorenz	butterfly	makes	the	same	pattern	(looping	around	and	
around	in	one	wing)	time	after	time.		This	needs	qualification.		The	pattern	in	
the	double	pendulum	was	pattern	periodic	at	relatively	low	energy	levels	and	
I	haven’t	seen	the	pattern	(i.e.:	phase	space	portrait)	produced	by	the	Lorenz	
equations	at	low	energy.		I	simply	suspect	it	shows	similar	spiral	patterns	but	
the	orbits	are	confined	within	one	wing	since	there	are	no	dramatic	events	
(i.e.:	the	waterwheel	changing	from	swinging	to	revolving).		

4) After	a	long	time	running	the	KE2/a1	patterns	usually	drifted	until	the	trace	
looked	like	it	would	cover	the	entire	available	area	with	traces	so	close	
together	they	would	shade	the	entire	region	and	touch	all	possible	values.		
This	appears	to	be	how	the	trace	in	the	Lorenz	butterfly	behaves.		

	
This	suggests	another	interesting	topic	to	explore,	namely	how	the	shape	of	the	4D	
attractor	might	change	as	the	energy	level	in	the	system	increases.			
	
In	hope	to	give	further	insight	into	what	4-D	attractor	might	look	like	the	following	
2D	screenshots	were	taken	of	a	perfectly	periodic	run	because	it	would	produce	a	
clearer	picture.		Each	screenshot	looked	at	the	attractor	from	a	different	side	if	you	
will.		The	time	for	the	trace	to	make	one	round	trip	around	the	pattern	is	shown	in	
red.		Even	with	these	screenshots	its	very	difficult	to	visualize	what	a	3-D	version	of	
this	attractor	would	look	like,	much	less	a	4-D	version.		A	3-D	plot	would	be	easily	to	
produce	but	this	model	does	not	provide	that	option.	
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The	screenshot	below	plots	angle	1	over	a	brief	period.		The	peak	just	after	t=5	
reappears	7.5	seconds	later	at	t=12.5	giving	further	indication	that	the	period	of	this	
perfectly	periodic	run	was	7.5	seconds.	
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Admittedly	it	is	very	hard	using	these	2D	views	to	even	imagine	what	a	3D	version	
of	that	4D	strange	attractor	might	look	like.		
	
****end	of	chapter	9****	
	
Hopefully	this	notion	of	a	possible	4D	attractor	for	the	double	pendulum	is	
compelling	enough	so	others	will	investigate	further.	

	
9.10	goes	here	


